Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 40/latex
\setcounter{section}{40}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabe
{}
{
Berechne das
\definitionsverweis {charakteristische Polynom}{}{}
zur
\definitionsverweis {Matrix}{}{}
\mathdisp {\begin{pmatrix} 2 & 5 & 3 \\ 7 & 4 & 2 \\3 & 7 & 5 \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{}
{
Berechne das
\definitionsverweis {charakteristische Polynom}{}{,}
die
\definitionsverweis {Eigenwerte}{}{}
und die
\definitionsverweis {Eigenräume}{}{}
zur Matrix
\mathdisp {\begin{pmatrix} 5 & 7 \\ 3 & 4 \end{pmatrix}} { }
über ${\mathbb C}$.
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei $M$ eine
$n \times n$-\definitionsverweis {Matrix}{}{}
über $K$. Zeige, dass für jedes
\mavergleichskette
{\vergleichskette
{ \lambda
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } (\lambda)
}
{ =} { \det \left( \lambda E_{ n } - M \right)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt\zusatzfussnote {Die Hauptschwierigkeit bei dieser Aufgabe ist vermutlich zu erkennen, dass man hier wirklich was zeigen muss} {.} {.}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei $M$ eine $n \times n$-\definitionsverweis {Matrix}{}{} über $K$. Wie findet man die \definitionsverweis {Determinante}{}{} von $M$ im \definitionsverweis {charakteristischen Polynom}{}{} $\chi_{ M }$ wieder?
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{,}
$V$ ein
$K$-\definitionsverweis {Vektorraum}{}{}
und
\maabbdisp {\varphi} {V} {V
} {}
eine
\definitionsverweis {lineare Abbildung}{}{.} Es sei
\mavergleichskette
{\vergleichskette
{ \lambda
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {Eigenwert}{}{}
von $\varphi$ und
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\definitionsverweis {Polynom}{}{.}
Zeige, dass $P(\lambda)$ ein Eigenwert von\zusatzfussnote {Der Ausdruck \mathlk{P(\varphi)}{} bedeutet, dass man die lineare Abbildung $\varphi$ in das Polynom $P$ einsetzt. Dabei muss man $X^n$ als $\varphi^n$, also als die $n$-fache Hintereinanderschaltung von $\varphi$ mit sich selbst, interpretieren, die Addition wird zur Addition von linearen Abbildungen, u.s.w} {.} {} $P(\varphi)$ ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Wir betrachten die lineare Abbildung
\maabbdisp {\varphi} {{\mathbb C}^3} {{\mathbb C}^3
} {,}
die bezüglich der Standardbasis durch die Matrix
\mavergleichskettedisp
{\vergleichskette
{A
}
{ =} { \begin{pmatrix} 2 & 1 & -2+ { \mathrm i} \\ 0 & { \mathrm i} & 1+ { \mathrm i} \\0 & 0 & -1+2 { \mathrm i} \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
beschrieben wird.
a) Bestimme das charakteristische Polynom und die Eigenwerte von $A$.
b) Berechne zu jedem Eigenwert einen Eigenvektor.
c) Stelle die Matrix für $\varphi$ bezüglich einer Basis aus Eigenvektoren auf.
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{ A
}
{ =} { \begin{pmatrix} -4 & 6 & 6 \\ 0 & 2 & 0 \\-3 & 3 & 5 \end{pmatrix}
}
{ \in} { \operatorname{Mat}_{3 \times 3}(\R)
}
{ } {
}
{ } {
}
}
{}{}{.}
Berechne:
\aufzaehlungvier{die Eigenwerte von $A$
}{die zugehörigen Eigenräume;
}{die geometrische und algebraische Vielfachheit der einzelnen Eigenwerte;
}{eine Matrix
\mavergleichskette
{\vergleichskette
{ C
}
{ \in }{ \operatorname{Mat}_{3 \times 3}(\R)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
derart, dass $C^{-1}AC$ eine Diagonalmatrix ist.
}
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{,}
\mavergleichskette
{\vergleichskette
{ a
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ m,n
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{ 1
}
{ \leq }{ m
}
{ \leq }{ n
}
{ }{
}
{ }{
}
}
{}{}{.}
Man gebe Beispiele für
$n \times n$-\definitionsverweis {Matrizen}{}{}
$M$ derart, dass $a$ ein
\definitionsverweis {Eigenwert}{}{}
zu $M$ ist mit der
\definitionsverweis {algebraischen Vielfachheit}{}{}
$n$ und der
\definitionsverweis {geometrischen Vielfachheit}{}{}
$m$.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{2}
{
Berechne das
\definitionsverweis {charakteristische Polynom}{}{}
zur
\definitionsverweis {Matrix}{}{}
\mathdisp {\begin{pmatrix} -3 & 8 & 5 \\ 4 & 7 & 1 \\2 & -4 & 5 \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{3}
{
Berechne das
\definitionsverweis {charakteristische Polynom}{}{,}
die
\definitionsverweis {Eigenwerte}{}{}
und die
\definitionsverweis {Eigenräume}{}{}
zur Matrix
\mathdisp {\begin{pmatrix} 2 & 7 \\ 5 & 4 \end{pmatrix}} { }
über ${\mathbb C}$.
}
{} {}
\inputaufgabe
{4}
{
Es sei
\mavergleichskettedisp
{\vergleichskette
{A
}
{ =} {\begin{pmatrix} -5 & 0 & 7 \\ 6 & 2 & -6 \\-4 & 0 & 6 \end{pmatrix}
}
{ \in} { \operatorname{Mat}_{3 \times 3}(\R)
}
{ } {
}
{ } {
}
}
{}{}{.}
Berechne:
\aufzaehlungvier{die Eigenwerte von $A$
}{die zugehörigen Eigenräume;
}{die geometrische und algebraische Vielfachheit der einzelnen Eigenwerte;
}{eine Matrix
\mavergleichskette
{\vergleichskette
{ C
}
{ \in }{ \operatorname{Mat}_{3 \times 3}(\R)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
derart, dass $C^{-1}AC$ eine Diagonalmatrix ist.
}
}
{} {}
\inputaufgabe
{4}
{
Bestimme für jedes
\mavergleichskette
{\vergleichskette
{ \lambda
}
{ \in }{ \Q
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die
\definitionsverweis {algebraischen}{}{}
und
\definitionsverweis {geometrischen}{}{}
Vielfachheiten für die
\definitionsverweis {Matrix}{}{}
\mavergleichskettedisp
{\vergleichskette
{M
}
{ =} { \begin{pmatrix} 3 & -4 & 5 \\ 0 & -1 & 2 \\0 & 0 & 3 \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{4}
{
Zeige, dass das
\definitionsverweis {charakteristische Polynom}{}{}
der sogenannten \stichwort {Begleitmatrix} {}
\mavergleichskettedisp
{\vergleichskette
{M
}
{ =} { \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \\ -a_0 & -a_1 & \ldots & -a_{n-2} & -a_{n-1} \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gleich
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M }
}
{ =} { X^n +a_{n-1}X^{n-1} + \cdots + a_1 X+a_0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ist.
}
{} {}
\inputaufgabe
{4}
{
Es sei \maabbdisp {\varphi} {\R^3} {\R^3 } {} eine \definitionsverweis {lineare Abbildung}{}{.} Zeige, dass $\varphi$ mindestens einen \definitionsverweis {Eigenvektor}{}{} besitzt.
}
{} {}
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|