Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 41
- Aufwärmaufgaben
Eine lineare Abbildung
werde bezüglich der Standardbasis durch die Matrix
beschrieben. Finde eine Basis, bezüglich der durch die Matrix
beschrieben wird.
Eine lineare Abbildung
werde bezüglich der Standardbasis durch die Matrix
beschrieben. Finde eine Basis, bezüglich der durch die Matrix
beschrieben wird.
Die nächsten Aufgaben verwenden die folgende Definition.
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Dann heißt ein Untervektorraum -invariant, wenn
gilt.
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Zeige folgende Eigenschaften.
- Der Nullraum ist - invariant.
- ist - invariant.
- Eigenräume sind -invariant.
- Es seien -invariante Unterräume. Dann sind auch und -invariant.
- Es sei ein -invarianter Unterraum. Dann sind auch der Bildraum und der Urbildraum -invariant.
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung und . Zeige, dass der kleinste - invariante Unterraum von , der enthält, gleich
ist.
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Zeige, dass die durch
definierte Teilmenge von ein - invarianter Unterraum ist.
Es sei eine Basis von , bezüglich der die Matrix zur linearen Abbildung
eine obere Dreiecksmatrix sei. Zeige, dass die erzeugten Untervektorräume
- invariant für jedes sind.
- Aufgaben zum Abgeben
Aufgabe (4 Punkte)
Aufgabe (3 Punkte)
Aufgabe (3 Punkte)
Eine lineare Abbildung
werde bezüglich der Standardbasis durch die Matrix
beschrieben. Finde eine Basis, bezüglich der durch die Matrix
beschrieben wird.
Aufgabe (2 Punkte)
Es sei eine Jordanmatrix zum Eigenwert . Zeige, dass der Eigenraum von zum Eigenwert eindimensional ist und dass es keine weiteren Eigenvektoren gibt.
Aufgabe (4 Punkte)
Es sei eine reelle -Matrix, die über nicht trigonalisierbar ist. Zeige, dass über diagonalisierbar ist.
Eine Isometrie auf einem euklidischen Vektorraum heißt eigentlich, wenn ihre Determinante gleich ist.
Aufgabe (2 Punkte)
Es sei
eine eigentliche Isometrie. Es sei vorausgesetzt, dass trigonalisierbar ist. Zeige, dass dann sogar diagonalisierbar ist.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|