Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Vorlesung 10/kontrolle
- Stetige Funktionen
Den Abstand zwischen zwei reellen Zahlen und bezeichnen wir mit .
Bei einer Funktion
kann man sich fragen, inwiefern der Abstand in der Wertemenge durch den Abstand in der Definitionsmenge kontrollierbar ist. Sei und der Bildpunkt. Man möchte, dass für Punkte , die „nahe“ an sind, auch die Bildpunkte „nahe“ an sind. Schon lineare Funktionen mit unterschiedlichen Steigungen zeigen, dass die „Nähe“ im Bildbereich nicht mit der „Nähe“ im Definitionsbereich direkt verglichen weden kann. Die Zielsetzung ist vielmehr (im Sinne des in der siebten Vorlesung erwähnten Approximationsprinzip), dass zu einer gewünschten Genauigkeit im Bildbereich überhaupt eine Ausgangsgenauigkeit gefunden werden kann, die sichert, dass die Funktionswerte innerhalb der gewünschten Genauigkeit beieinander liegen.
Um diese intuitive Vorstellung zu präzisieren, sei ein vorgegeben. Dieses repräsentiert eine „gewünschte Zielgenauigkeit“. Die Frage ist dann, ob man ein finden kann (eine „Startgenauigkeit“) mit der Eigenschaft, dass für alle mit die Beziehung gilt. Dies führt zum Begriff der stetigen Abbildung.
Es sei eine Teilmenge,
eine Funktion und . Man sagt, dass stetig im Punkt ist, wenn es zu jedem ein derart gibt, dass für alle mit die Abschätzung gilt. Man sagt, dass stetig ist, wenn sie in jedem Punkt stetig ist.
Bei sollte man an den Definitionsbereich der Funktion denken. Typische Situationen sind, dass ganz ist, oder ein Intervall, oder ohne endlich viele Punkte und Ähnliches. Statt mit den reellen Zahlen und kann man genauso gut mit Stammbrüchen und arbeiten.
Wir betrachten die Funktion
mit
Diese Funktion ist im Nullpunkt nicht stetig. Für und jedes beliebige positive gibt es nämlich negative Zahlen mit . Für diese ist aber .
Die folgende Aussage bringt die Stetigkeit mit konvergenten Folgen in Verbindung.
Es sei eine Teilmenge,
eine Funktion und . Dann sind folgende Aussagen äquivalent.
- ist stetig im Punkt .
- Für jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .
Es sei (1) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass
ist. Dazu sei vorgegeben. Wegen (1) gibt es ein mit der angegebenen Abschätzungseigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle die Abschätzung
gilt. Nach der Wahl von ist dann
sodass die Bildfolge gegen konvergiert.
Es sei (2) erfüllt. Wir nehmen an, dass nicht stetig ist. Dann gibt es ein
derart, dass es für alle
Elemente
gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand besitzt, der größer als ist. Dies gilt dann insbesondere für die Stammbrüche
, .
D.h. für jede natürliche Zahl
gibt es ein
mit
Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenglieder zu zumindest ist. Dies ist ein Widerspruch zu (2).
- Rechenregeln für stetige Funktionen
Es seien und Teilmengen und
und
Funktionen mit . Dann gelten folgende Aussagen.
- Wenn in und in stetig sind, so ist auch die Hintereinanderschaltung in stetig.
- Wenn und stetig sind, so ist auch stetig.
Die Aussage (1) ergibt sich direkt aus der Folgencharakterisierung der Stetigkeit. Daraus folgt auch (2).
Es sei und seien
Dann sind auch die Funktionen
stetig. Für eine Teilmenge , auf der keine Nullstelle besitzt, ist auch die Funktion
stetig.
Dies ergibt sich aus der Folgencharakterisierung der Stetigkeit und Lemma 8.1.
Aufgrund von Beispiel 10.2 und Lemma 10.6 sind für jedes die Potenzen
stetig. Daher sind auch für jedes die Funktionen
stetig und wiederum aufgrund von Lemma 10.6 sind auch alle Funktionen
stetig.
Dies folgt aus Korollar 10.7 und Lemma 10.6.
- Grenzwerte von Funktionen
Funktionen sind häufig in bestimmten Punkten nicht definiert, beispielsweise, weil die verwendeten Funktionsterme nicht definiert sind. Es macht aber einen Unterschied, ob nur die gewählte Funktionsvorschrift in diesem Punkt nicht definiert ist, es aber eine sinnvolle (stetige) Fortsetzung gibt, oder ob die Funktion selbst prinzipiell nicht sinnvoll fortsetzbar ist (weil sie beispielsweise einen Pol oder ein chaotischeres Verhalten besitzt). Die folgende Begriffsbildung wird vor allem für die Definition der Differenzierbarkeit wichtig werden (besitzen die Differenzenquotienten einen sinnvollen Limes, der dann der Differentialquotient heißt).
Es sei eine Teilmenge und sei ein Punkt. Es sei
eine Funktion. Dann heißt Grenzwert (oder Limes) von in , wenn für jede Folge in , die gegen konvergiert, auch die Bildfolge gegen konvergiert. In diesem Fall schreibt man
Dieser Begriff ist eigentlich nur dann sinnvoll, wenn es überhaupt Folgen in gibt, die gegen konvergieren. Eine typische Situation ist die folgende: Es sei ein Intervall, sei ein Punkt darin und es sei . Die Funktion sei auf , aber nicht im Punkt definiert, und es geht um die Frage, inwiefern man zu einer sinnvollen Funktion auf ganz fortsetzen kann. Dabei soll durch bestimmt sein.
Es sei eine Teilmenge und sei ein Punkt. Es seien und Funktionen derart, dass die Grenzwerte und existieren. Dann gelten folgende Beziehungen.
- Die Summe besitzt einen Grenzwert in , und zwar ist
- Das Produkt besitzt einen Grenzwert in , und zwar ist
- Es sei für alle und . Dann besitzt der Quotient einen Grenzwert in , und zwar ist
Dies ergibt sich direkt aus Lemma 8.1.
Es sei eine Teilmenge und sei ein Punkt. Es sei eine Funktion und . Dann sind folgende Aussagen äquivalent.
- Es ist
- Für jedes gibt es ein derart, dass für alle mit die Abschätzung gilt.
Beweis
Für eine stetige Funktion
folgt daraus, dass sie sich zu einer stetigen Funktion
(durch
)
genau dann fortsetzen lässt, wenn der Limes von in gleich ist.