Kurs:Mathematik für Anwender II/2/Klausur
Aufgabe * (4 Punkte)
Definiere die folgenden (kursiv gedruckten) Begriffe.
- Die Norm zu einem Skalarprodukt auf einem - Vektorraum .
- Eine Orthonormalbasis in einem euklidischen Vektorraum .
- Ein homogenes lineares Differentialgleichungssystem mit konstanten Koeffizienten.
- Die
Faser
zu einer Abbildung
über einem Punkt .
- Das totale Differential in einem Punkt einer in diesem Punkt total differenzierbaren Abbildung
(dabei seien und endlichdimensionale reelle Vektorräume).
- Ein kritischer Punkt einer
total differenzierbaren
Abbildung
- Eine sternförmige Teilmenge .
- Die Laplace-Ableitung einer zweimal differenzierbaren Funktion
Aufgabe * (4 Punkte)
Formuliere die folgenden Sätze.
- Das Folgenkriterium für die Stetigkeit in einem Punkt zu einer Abbildung
zwischen metrischen Räumen
und . - Die Mittelwertabschätzung für eine differenzierbare Kurve
- Das
Lösungsverfahren
für ein durch ein Zentralfeld
- Die Formel für das Volumen einer kompakten Teilmenge unter einer linearen Abbildung
Aufgabe * (4 Punkte)
Aufgabe * (2 ( ) Punkte)
Wir betrachten die Funktionen
Es seien drei Vektoren. Wir definieren die Kurve
a) Berechne und .
b) Berechne .
c) Zeige, dass ein Vielfaches von und ein Vielfaches von ist.
d) Skizziere für , und das Bild der Kurve für .
In der folgenden Aufgabe darf elementargeometrisch argumentiert werden.
Aufgabe * (8 (4+4) Punkte)
Wir betrachten die reelle Ebene ohne den offenen Kreis mit Mittelpunkt und Radius , also
Eine Person befindet sich im Punkt und möchte zum Punkt , wobei sie sich nur in bewegen darf.
a) Zeige, dass die Person von nach entlang von zwei geraden Strecken kommen kann, deren Gesamtlänge ist.
b) Zeige, dass die Person von nach entlang eines stetigen Weges kommen kann, dessen Gesamtlänge maximal ist.
Aufgabe * (4 Punkte)
Aufgabe * (4 Punkte)
Aufgabe * (5 Punkte)
Aufgabe * (4 Punkte)
Bestimme das Taylor-Polynom zweiter Ordnung der Funktion
im Punkt .
Aufgabe * (3 Punkte)
Begründe ohne Differentialrechnung, dass die Funktion
kein lokales Extremum besitzt.
Aufgabe * (6 Punkte)
Wir betrachten die Abbildung
Zeige, dass ein Punkt genau dann ein regulärer Punkt von ist, wenn die Koordinaten von paarweise verschieden (also , und ) sind.
Aufgabe * (11 (4+7) Punkte)
Wir betrachten die Funktion
a) Bestimme zu jedem Punkt das Volumen des Körpers
b) Zeige, dass das (von abhängige) Volumen aus Teil a) in genau einem Punkt minimal ist (dieser Punkt muss nicht explizit angegeben werden).
Aufgabe * (5 Punkte)
Die rechteckige Grundseite (Unterseite) eines Bootes (unter Wasser) habe die Breite und die Länge , die (ebenfalls rechteckige) Deckseite (Oberseite) habe die Breite und die Länge , wobei die Seiten parallel zueinander seien und den Abstand besitzen. Die vier übrigen Seiten seien ebene Verbindungen zwischen Ober- und Unterseite. Das Boot wiegt mit Besatzung, aber ohne Ladung . Der Tiefgang des Bootes soll maximal betragen. Mit welcher Masse kann das Boot maximal beladen werden?
- Hilfsmittel
Zur pdf-Version der Klausur mit Lösungen