Kurs:Vorkurs Mathematik (Osnabrück 2014)/Arbeitsblatt 1



Übungsaufgaben[1]



Beweise durch Induktion die folgenden Formeln.



Beweise durch Induktion, dass die Summe von aufeinanderfolgenden ungeraden Zahlen (beginnend bei ) stets eine Quadratzahl ist.

(Man denke auch an die verschiedenen Möglichkeiten, ein quadratisches Gitter abzuzählen).


Zeige mittels vollständiger Induktion für die Formel



Beweise durch Induktion für alle die Formel



Zeige, dass mit der einzigen Ausnahme die Beziehung

gilt.



Die Städte seien untereinander durch Straßen verbunden und zwischen zwei Städten gibt es immer genau eine Straße. Wegen Bauarbeiten sind zur Zeit alle Straßen nur in eine Richtung befahrbar. Zeige, dass es trotzdem mindestens eine Stadt gibt, von der aus alle anderen Städte erreichbar sind.



Wir betrachten die Funktion

Zeige durch Induktion, dass die -te Ableitung () von gleich

ist.



Es sei . Zeige durch Induktion die Gleichheit



Eine -Schokolade ist ein rechteckiges Raster, das durch Längsrillen und Querrillen in () mundgerechte kleinere Rechtecke eingeteilt ist. Ein Teilungsschritt an einer Schokolade ist das vollständige Durchtrennen einer Schokolade längs einer Längs- oder Querrille. Eine vollständige Aufteilung einer Schokolade ist eine Folge von Teilungsschritten (an der Ausgangsschokolade oder an einer zuvor erhaltenen Zwischenschokolade), deren Endprodukt aus den einzelnen Mundgerechtecken besteht. Zeige durch Induktion, dass jede vollständige Aufteilung einer -Schokolade aus genau Teilungsschritten besteht.



Die offizielle Berechtigung für die Klausurteilnahme werde durch mindestens Punkte im Übungsbetrieb erworben. Professor Knopfloch sagt, dass es aber auf einen Punkt mehr oder weniger nicht ankomme. Zeige durch eine geeignete Induktion, dass man mit jeder Punkteanzahl zur Klausur zugelassen wird.



Zeige, dass für jede ungerade Zahl die Zahl ein Vielfaches von ist.



Welche Teilerbeziehung besteht zwischen und einer beliebigen ganzen Zahl und welche Teilerbeziehung besteht zwischen und einer beliebigen ganzen Zahl ?



Es seien mit und . Zeige, dass der Rest von bei Division durch gleich dem Rest von bei Division durch ist.



Es sei eine positive natürliche Zahl. Es seien natürliche Zahlen und es seien bzw. die Reste von bzw. bei Division durch . Zeige, dass der Rest von bei Division durch gleich dem Rest von bei Division durch ist. Formuliere und beweise die entsprechende Aussage für die Multiplikation.


Bei der folgenden Aufgabe denke man etwa an .


Es seien , . Zeige, dass bei Division mit Rest durch aller Potenzen von (also ) schließlich eine Periodizität eintreten muss. Es gibt also derart, dass sich die Reste von bei den folgenden Potenzen periodisch (oder „zyklisch“) wiederholen (insbesondere besitzen also und den gleichen Rest). Zeige ebenfalls, dass diese Periodizität nicht bei anfangen muss.



Betrachte im Zehnersystem die Zahl

Wie sieht diese Zahl im Dualsystem aus?



Betrachte im er System mit den Ziffern die Zahl

Wie sieht diese Zahl im Zehnersystem aus?



Begründe die Eindeutigkeit der Ziffernentwicklung im Zehnersystem mit Hilfe der Eindeutigkeit bei der Division mit Rest.



Begründe, ohne auf Gewohnheiten zu verweisen, warum das schriftliche Addieren (von natürlichen Zahlen im Zehnersystem) korrekt ist, also wirklich die Summe der vorgegebenen Zahlen berechnet.



Begründe, ohne auf Gewohnheiten zu verweisen, warum das schriftliche Multiplizieren (von natürlichen Zahlen im Zehnersystem) korrekt ist, also wirklich das Produkt der vorgegebenen Zahlen berechnet.




Fußnoten
  1. Eine Aufgabe mit Stern bedeutet, dass es dazu eine Lösung gibt, die über einen Link zu erreichen ist.


Kurs:Vorkurs Mathematik (Osnabrück 2014) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)