Definition - Lokalkonvexer Raum

Bearbeiten

Einen topologischen Vektorraum nennt man lokalkonvex (genauer einen lokalkonvexen topologischen Vektorraum) wenn dieser eine Nullumgebungsbasis aus konvexen Umgebungen besitzt.

Erzeugung der Topologie durch Halbnormen

Bearbeiten

Da jedes topologische Vektorraum wegen der Stetigkeit der Multiplikation eine Umgebungsbasis aus kreisförmigen (und konvexen) Die Minkowski-Funktionale der aAlternativ können lokalkonvexe Räume auch als Vektorräume definiert werden, deren Topologie durch eine Familie von Halbnormen erzeugt wird.

Konvexe Nullumgebung in Euklischen Räumen

Bearbeiten

   

Verallgemeinerung von normierten Räumen

Bearbeiten

Ein lokalkonvexer Raum kann als eine Verallgemeinerung eines normierten Vektorraumes bzw. eines normierbaren Vektorraumes betrachtet werden, denn die Normkugeln um 0 sind konvexe Umgebungen des Nullpunktes.

Aufgabe für Studierende

Bearbeiten

Betrachten Sie, das Topologisierungslemma für Algebren  , bei denen ein Zusammenhang zwischen Nullumgebungen   und dem zugehörigen Minkowski-Funktional. Erläutern Sie den Zusammenhang zwischen

  • der Dreiecksungleichung,
  • der Stetigkeit der Addition auf der topologischen Algebra und
  • der Konvexität der Nullumgebung  .

Geometrische Definition

Bearbeiten

Ein topologischer Vektorraum   (über dem Körper   der reellen Zahlen oder dem Körper   der komplexen Zahlen) heißt lokalkonvex, wenn jede Nullumgebung   (d. h. Umgebung des Nullpunktes) eine offene Teilmenge   mit den folgenden drei Eigenschaften enthält:

Definition: absorbierend

Bearbeiten

Eine Teilmenge   eines reellen oder komplexen Vektorraumes   heißt dabei absorbierend, wenn es zu jedem Vektor   in   eine positive Zahl   gibt, so dass   für jede reelle bzw. komplexe Zahl   mit   ein Element von   ist.

Definition: kreisförmig

Bearbeiten

Eine Teilmenge   eines reellen oder komplexen Vektorraumes   heißt kreisförmig, wenn zu jedem Vektor   in   und jeder Zahl   mit   der Vektor   ebenfalls in   liegt. Im Fall eines reellen Vektorraums bedeutet dies, dass die Strecke von   nach   in   liegt; bei einem komplexen Vektorraum bedeutet es, dass   die „Kreisscheibe“   enthält. Die Namensgebung erfolgte durch diese geometrischen Bedeutung, dass beliebige Konvexkombinationen aus Punkten der Menge und dem Nullvektor   wieder in eine konvexen Menge liegen, ist der Begriff der Kreisförmigkeit gewählt worden. Alternative werden solche Mengen auch ausgewogen genannt.

Definition: absolutkonvex

Bearbeiten

Eine kreisförmige und konvexe Menge heißt absolutkonvexe Menge.

Stetigkeit der Multiplikation mit Skalaren

Bearbeiten

Die Multiplkation mit Skalaren ist per Definition in einem topologischen Vektorraum stetig. Diese Stetigkeit liefert die Eigenschaft, das Nullumgebungen absorbierend sind. Die Stetigkeit der Multiplkation mit Skalaren liefert ferner, dass jede Nullumgebung eine kreisförmige Nullumgebung enthält. Daher gibt es genau dann eine Nullumgebungsbasis aus konvexen, absorbierenden und kreisförmigen Mengen, wenn es eine Nullumgebungsbasis aus konvexen Mengen gibt.[1] Zwei solche Umgebungsbasen müssen natürlich nicht übereinstimmen, aber die Existenz der einen impliziert die Existenz der anderen.

Definition der Topologie durch Halbnormen

Bearbeiten

Betrachtet man Topologisierungslemma für Algebren so erkennt man den Zusammenhang zwischen der Topologie und den topologieerzeugenden Gaugefunktionalen. Lokalkonvexe Räume lassen sich auch durch Halbnormen-Systeme charakterisieren:

  • Ein topologischer Vektorraum   heißt lokalkonvex, wenn seine Topologie durch eine Familie   von Halbnormen definiert ist.
  • Ein Netz konvergiert genau dann, wenn es bezüglich aller Halbnormen aus   konvergiert; genauer: Es ist   genau dann, wenn   für alle Halbnormen  . Die Kugeln  , wobei  , bilden dabei eine Subbasis der Topologie, die Mengen   sind absolutkonvexe Nullumgebungen.

Ist umgekehrt eine Nullumgebungsbasis aus absolutkonvexen Mengen gegeben, so bilden die zugehörigen Minkowski-Funktionale ein definierendes Halbnormen-System.

Beispiele

Bearbeiten
  1. Alle normierten Räume (insb. alle Banachräume) sind lokalkonvex, wobei die Familie   nur die (echte) Norm enthält.
  2. Direkte Limites von Banachräumen wie der Raum der stetigen Funktionen mit kompaktem Träger auf  .
  3. Alle topologischen Vektorräume mit der schwachen Topologie.
  4. Banachräume mit schwacher Topologie sowie Dualräume von Banachräumen mit der schwach-*-Topologie sind lokalkonvex, wobei die Familie   hier durch die Funktionale aus dem Dual- respektive Prädualraum mittels   (y ist das Funktional) erzeugt wird.
  5. Projektive Limites von Banachräumen sind lokalkonvex. Die Familie   ist durch die Normen der Banachräume, deren Limes gebildet wird, gegeben. Als Beispiel betrachte   mit der Familie der Normen
     
    Obwohl die Familie aus echten Normen besteht, ist der Raum kein Banachraum!
  6. Beliebige Produkte von Banachräumen, wie z. B.  , der Raum aller Funktionen von   nach   mit der Topologie der punktweisen Konvergenz.
  7. Der Schwartz-Raum, Folgenräume wie zum Beispiel die Köthe-Räume, Funktionenräume wie zum Beispiel Räume von Testfunktionen.
  8. Der Raum Lp([0,1]) ist für   ein topologischer (sogar metrisierbarer) Vektorraum, der nicht lokalkonvex ist.
  9. Ebenso ist der Raum der Zufallsvariablen auf einem gegebenen Wahrscheinlichkeitsraum mit der Topologie der stochastischen Konvergenz ein topologischer Vektorraum, der im Allgemeinen nicht lokalkonvex ist.

Eigenschaften

Bearbeiten

Erfüllt die Halbnormenmenge aus obiger Definition  , so ist der Raum ein Hausdorff-Raum. Viele Autoren betrachten nur Hausdorff’sche lokalkonvexe Räume.

Hausdorffsche, lokalkonvexe Räume haben genügend viele stetige, lineare Funktionale, um Punkte zu trennen, d. h. für alle   gibt es ein stetiges, lineares Funktional   mit  . Das zeigt sich in der Gültigkeit wichtiger Sätze wie

Die stetigen, linearen Funktionale auf einem topologischen Vektorraum V trennen genau dann die Punkte, wenn es eine gröbere Topologie auf V gibt, die V zu einem hausdorffschen, lokalkonvexen Raum macht. Die Untersuchung lokalkonvexer Räume mittels stetiger, linearer Funktionale führt zu einer sehr weitreichenden Theorie, die für allgemeine topologische Vektorräume so nicht möglich ist. Es gibt topologische Vektorräume, die außer dem Nullfunktional kein weiteres stetiges, lineares Funktional besitzen.

Verallgemeinerungen

Bearbeiten

Spezielle Klassen lokalkonvexer Räume

Bearbeiten
 
Beziehungen der Raumklassen untereinander, ein Pfeil führt von der spezielleren zur allgemeineren Raumklasse.

Viele Klassen lokalkonvexer Räume zeichnen sich durch die Gültigkeit bestimmter Sätze, die aus der Theorie der Banachräume oder normierten Räume bekannt sind, aus. So sind z. B. die tonnelierten Räume genau diejenigen lokalkonvexen Räume, in denen der Satz von Banach-Steinhaus noch gilt. Diese Sätze können in den entsprechenden Raumklassen in „Reinkultur“ untersucht werden, ihre Tragweite wird deutlich. Die bekanntesten dieser Raumklassen sind:

Räume differenzierbarer oder holomorpher Funktionen tragen natürliche lokalkonvexe Topologien, deren Eigenschaften zu weiteren Raumklassen Anlass geben. Die wichtigsten dieser Raumklassen, die zu einem tieferen Verständnis der lokalkonvexen Theorie führen, sind etwa

Historische Bemerkungen

Bearbeiten

Bereits 1906 stelle M. Fréchet fest, dass der „Abschluss“ der Menge   der beschränkten stetigen Funktionen auf   in der Menge aller beschränkten Funktionen auf   bezüglich der punktweisen Konvergenz nicht durch die Menge aller Grenzwerte von Folgen aus   beschrieben werden kann. Der dazu erforderliche allgemeinere Umgebungsbegriff, wie er 1914 durch F. Hausdorff in der allgemeinen Topologie eingeführt wurde, fand in der Funktionalanalysis erstmals durch J. v. Neumann in seiner Beschreibung der schwachen bzw. starken Nullumgebungen in  ,   Hilbertraum, Anwendung, wobei eine Verallgemeinerung auf Banachräume nicht versucht wurde. Der Umgebungsbegriff für allgemeinere Situationen findet sich bei S. Banach (1932) und Bourbaki (1938) in Untersuchungen über die schwach-*-Topologie, wobei man sich zunächst auf separable Räume beschränkte, damit die Einheitskugel im Dualraum metrisierbar ist. Obwohl die Untersuchung normierter Räume im Vordergrund stand, war damit klar, dass allgemeinere Raumklassen in natürlicher Weise auftreten.

S. Banach, S. Mazur und W Orlicz betrachteten Räume, deren Topologie durch eine Folge   von Halbnormen gegeben ist, und definierten den Abstand

 .

Für die vollständigen unter diesen Räumen, die man heute Frécheträume nennt, konnte der Satz vom abgeschlossenen Graphen bewiesen werden. Dass aber auch metrisierbare Räume nicht ausreichen, zeigte die Feststellung J. v. Neumanns aus dem Jahre 1929, dass die schwache Topologie auf unendlich-dimensionalen Hilberträumen nicht metrisierbar ist.

1934 wurden von G. Köthe und O. Toeplitz neue Typen von Räumen, sogenannte Folgenräume, eingeführt und deren Dualitätstheorie im Kontext der Folgenräume entwickelt. In diesem Zusammenhang tauchte der Begriff des starken Dualraums auf.

Die im Sinne der Metrik beschränkten Mengen verhielten sich nicht wie im Falle normierter Räume, es bedurfte einer topologischen Charakterisierung der Beschränktheit, wie sie in der unten zitierten Arbeit J. v. Neumanns aus dem Jahre 1935 gegeben wurde. Dieser Beschränktheitsbegriff findet sich im selben Jahr auch bei A. N. Kolmogorow bei dem Beweis der Aussage, dass ein hausdorffscher topologischer Vektorraum genau dann normierbar ist, wenn er eine beschränkte und konvexe Nullumgebung besitzt (Normierbarkeitskriterium von Kolmogorow). Von Neumanns Arbeit enthält auch erstmals die allgemeine Definition des lokalkonvexen Raums, die Äquivalenz der oben angegebenen geometrischen Definition und der Definition durch Halbnormen wird dort bewiesen. Dadurch konnten die Ideen von Köthe und Toeplitz in einem allgemeineren Rahmen durchgeführt werden. Meilensteine waren die Ergebnisse von G. Mackey aus dem Jahre 1946, siehe Satz von Mackey, Satz von Mackey-Arens, und die Untersuchungen von Tensorprodukten von A. Grothendieck aus dem Jahre 1953. Weitere Bedeutung erlangten die lokalkonvexen Räumen durch von L. Schwartz, A. Grothendieck, S. L. Sobolew, S. Bochner und anderen durchgeführten Untersuchungen in der Theorie der partiellen Differentialgleichungen und die damit einhergehende Begründung der Theorie der Distributionen. Der Satz vom Kern führte Grothendieck zum wichtigen Begriff des nuklearen Raums.

Siehe auch

Bearbeiten

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. R. Meise, D. Vogt: Einführung in die Funktionalanalysis, Vieweg, 1992 ISBN 3-528-07262-8, Lemma 22.2

Seiten-Information

Bearbeiten

Diese Seite wurde auf Basis der folgenden Wikipedia-Quelle erstellt: