Untervektorräume/Summe/Textabschnitt
Zu einem -Vektorraum und einer Familie von Untervektorräumen definiert man die Summe dieser Untervektorräume durch
Dafür schreibt man auch . Die Summe ist stets wieder ein Untervektorraum. Bei
sagt man, dass die Summe der Untervektorräume ist. Der folgende Satz drückt eine wichtige Beziehung zwischen der Dimension der Summe von zwei Untervektorräumen und der Dimension ihres Durchschnitts aus.
Es sei eine Basis von . Diese ergänzen wir gemäß Fakt einerseits zu einer Basis von und andererseits zu einer Basis von . Dann ist
ein Erzeugendensystem von . Wir behaupten, dass es sich sogar um eine Basis handelt. Es sei dazu
Daraus ergibt sich, dass das Element
zu gehört. Daraus folgt direkt für und für . Somit ergibt sich dann auch für alle . Also liegt lineare Unabhängigkeit vor. Insgesamt ist also
Der Durchschnitt von zwei Ebenen im durch den Nullpunkt ist „im Normalfall“ eine Gerade, und die Ebene selbst, wenn zweimal die gleiche Ebene genommen wird, aber niemals nur ein Punkt. Diese Gesetzmäßigkeit kommt in der folgenden Aussage zum Ausdruck.
Es sei ein Körper und ein endlichdimensionaler -Vektorraum der Dimension und es seien Untervektorräume der Dimension bzw. .
Dann ist
Nach Fakt ist
Übrigens nennt man zu einem Untervektoraum
die Differenz auch die Kodimension von in . Mit diesem Begriff kann man die obige Aussage so formulieren, dass die Kodimension eines Durchschnitts von Untervektorräumen höchstens gleich der Summe der beiden Kodimensionen ist.
Es sei ein homogenes lineares Gleichungssystem aus Gleichungen in Variablen gegeben.
Dann ist die Dimension des Lösungsraumes des Systems mindestens gleich .
Der Lösungsraum einer linearen Gleichung in Variablen besitzt die Dimension oder . Der Lösungsraum des Systems ist der Durchschnitt der Lösungsräume der einzelnen Gleichungen. Daher folgt die Aussage durch mehrfache Anwendung von Fakt auf die einzelnen Lösungsräume.