Vektorraum/Basis/Charakterisierung/Einführung/Textabschnitt


Es sei ein Körper und ein -Vektorraum. Dann heißt ein linear unabhängiges Erzeugendensystem , , von eine Basis von .


Die Standardvektoren im bilden eine Basis. Die lineare Unabhängigkeit wurde in Beispiel gezeigt. Um zu zeigen, dass auch ein Erzeugendensystem vorliegt, sei

ein beliebiger Vektor. Dann ist aber direkt

Also liegt eine Basis vor, die man die Standardbasis des nennt.




Es sei ein Körper und ein -Vektorraum. Es sei eine Familie von Vektoren. Dann sind folgende Aussagen äquivalent.

  1. Die Familie ist eine Basis von .
  2. Die Familie ist ein minimales Erzeugendensystem, d.h. sobald man einen Vektor weglässt, liegt kein Erzeugendensystem mehr vor.
  3. Für jeden Vektor gibt es genau eine Darstellung
  4. Die Familie ist maximal linear unabhängig, d.h. sobald man irgendeinen Vektor dazunimmt, ist die Familie nicht mehr linear unabhängig.

Wir führen einen Ringschluss durch. . Die Familie ist ein Erzeugendensystem. Nehmen wir einen Vektor, sagen wir , aus der Familie heraus. Wir müssen zeigen, dass dann die verbleibende Familie, also kein Erzeugendensystem mehr ist.  Wenn sie ein Erzeugendensystem wäre, so wäre insbesondere als Linearkombination der Vektoren darstellbar, d.h. man hätte

Dann ist aber

eine nichttriviale Darstellung der , im Widerspruch zur linearen Unabhängigkeit der Familie. . Nach Voraussetzung ist die Familie ein Erzeugendensystem, sodass sich jeder Vektor als Linearkombination darstellen lässt.  Angenommen, es gibt für ein eine mehrfache Darstellung, d.h.

wobei mindestens ein Koeffizient verschieden sei. Ohne Einschränkung sei . Dann erhält man die Beziehung

Wegen kann man durch diese Zahl dividieren und erhält eine Darstellung von durch die anderen Vektoren. Nach Aufgabe ist auch die Familie ohne ein Erzeugendensystem von , im Widerspruch zur Minimalität. . Wegen der eindeutigen Darstellbarkeit besitzt insbesondere der Nullvektor nur die triviale Darstellung, d.h. die Vektoren sind linear unabhängig. Nimmt man einen Vektor hinzu, so besitzt dieser eine Darstellung

und daher ist

eine nichttriviale Darstellung der , sodass die verlängerte Familie nicht linear unabhängig ist. . Die Familie ist linear unabhängig, wir müssen zeigen, dass sie auch ein Erzeugendensystem bildet. Es sei dazu . Nach Voraussetzung ist die Familie nicht linear unabhängig, d.h. es gibt eine nichttriviale Darstellung

Dabei ist , da andernfalls dies eine nichttriviale Darstellung der allein mit den linear unabhängigen Vektoren wäre. Daher können wir

schreiben, sodass eine Darstellung von möglich ist.


Es sei eine Basis eines -Vektorraums gegeben. Aufgrund von Fakt  (3) bedeutet dies, dass es für jeden Vektor eine eindeutig bestimmte Darstellung (eine Linearkombination)

gibt. Die dabei eindeutig bestimmten Elemente (Skalare) heißen die Koordinaten von bezüglich der gegebenen Basis. Bei einer gegebenen Basis entsprechen sich also die Vektoren aus und die Koordinatentupel . Man sagt, dass eine Basis ein lineares Koordinatensystem festlegt.[1]




Es sei ein Körper und ein -Vektorraum mit einem endlichen Erzeugendensystem.

Dann besitzt eine endliche Basis.

Es sei , , ein Erzeugendensystem von mit einer endlichen Indexmenge . Wir wollen mit der Charakterisierung aus Fakt  (2) argumentieren. Falls die Familie schon minimal ist, so liegt eine Basis vor. Andernfalls gibt es ein derart, dass die um reduzierte Familie, also , , ebenfalls ein Erzeugendensystem ist. In diesem Fall kann man mit der kleineren Indexmenge weiterargumentieren.
Mit diesem Verfahren gelangt man letztlich zu einer Teilmenge derart, dass , , ein minimales Erzeugendensystem, also eine Basis ist.

  1. Lineare Koordinaten vermitteln also eine bijektive Beziehung zwischen Punkten und Zahlentupeln. Aufgrund der Linearität ist eine solche Bijektion mit der Addition und der Skalarmultiplikation verträglich. In vielen anderen Kontexten spielen auch nichtlineare (oder krummlinige) Koordinaten eine wichtige Rolle. Auch diese setzen Raumpunkte mit Zahlentupeln in eine bijektive Verbindung. Wichtige nichtlineare Koordinaten sind u.A. Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten. Mathematische Probleme können häufig durch eine geeignete Wahl von Koordinaten vereinfacht werden, beispielsweise bei Volumenberechnungen.