Gewöhnliche Differentialgleichung/Lokal Lipschitz/Eindeutigkeit/Textabschnitt
Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und
ein stetiges Vektorfeld auf das lokal einer Lipschitz-Bedingung genügt. Es sei ein offenes Teilintervall und es seien
Lösungen des Anfangswertproblems
Dann ist .
Wir betrachten die Menge
Wegen
ist diese Menge nicht leer.
Zu jedem Punkt
gibt es nach
Fakt
eine offene Intervallumgebung
,
worauf es zu gegebener Anfangsbedingung
genau eine Lösung der Differentialgleichung gibt. Wenn
ist, so ist
und daher stimmen
und
in einer offenen Umgebung
mit der eindeutigen Lösung und damit untereinander überein. Also ist
.
Dies bedeutet, dass eine
offene
Teilmenge von ist.
Andererseits sind
und
stetig
und daher ist nach
Aufgabe
die Menge auch
abgeschlossen
in .
Da ein Intervall
nach Fakt zusammenhängend
ist, folgt
.
Das folgende Beispiel zeigt, dass ohne die Lipschitz-Bedingung die Lösung eines Anfangswertproblems nicht eindeutig bestimmt ist. In diesem Beispiel ist das Vektorfeld nach ableitbar, die Ableitung ist aber nicht stetig, so dass
Fakt
nicht anwendbar ist.
Wir betrachten das Anfangswertproblem
zum zeitunabhängigen Vektorfeld
Offensichtlich gibt es die stationäre Lösung
aber auch
ist eine Lösung, wie man durch Nachrechnen sofort bestätigt. Aus diesen beiden Lösungen kann man sich noch weitere Lösungen basteln. Es seien dazu reelle Zahlen. Dann ist auch
eine Lösung. D.h. es gibt Lösungen, bei denen das Teilchen beliebig lange (im Zeitintervall von nach ) ruht und danach (und davor) sich bewegt. Sobald sich das Teilchen in einem Punkt befindet, ist der Bewegungsablauf lokal eindeutig bestimmt.
Zu einem stetigen Vektorfeld
kann man sich fragen, ob es ein maximales Definitionsintervall für die Lösung eines Anfangswertproblems
gibt. Dies ist in der Tat der Fall, wenn das Vektorfeld lokal einer Lipschitz-Bedingung genügt! Man kann nämlich alle Teilmengen
betrachten. Wegen Fakt stimmen zwei Lösungen und auf dem Durchschnitt überein, und liefern daher eine eindeutige Lösung auf der Vereinigung . Daher enthält die Menge der Teilintervalle, auf denen eine Lösung definiert ist, ein maximales Teilintervall .
Dieses Teilintervall kann kleiner als sein. Die Grenzen des maximalen Teilintervalls, auf dem eine Lösung definiert ist, heißen auch Entweichzeiten.