Gewöhnliche Differentialgleichung/Lokal Lipschitz/Eindeutigkeit/Textabschnitt


Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein stetiges Vektorfeld auf das lokal einer Lipschitz-Bedingung genügt. Es sei ein offenes Teilintervall und es seien

Lösungen des Anfangswertproblems

Dann ist .

Wir betrachten die Menge

Wegen ist diese Menge nicht leer. Zu jedem Punkt gibt es nach Fakt eine offene Intervallumgebung , worauf es zu gegebener Anfangsbedingung genau eine Lösung der Differentialgleichung gibt. Wenn ist, so ist und daher stimmen und in einer offenen Umgebung mit der eindeutigen Lösung und damit untereinander überein. Also ist . Dies bedeutet, dass eine offene Teilmenge von ist.
Andererseits sind und stetig und daher ist nach Aufgabe die Menge auch abgeschlossen in .
Da ein Intervall nach Fakt zusammenhängend ist, folgt .


Das folgende Beispiel zeigt, dass ohne die Lipschitz-Bedingung die Lösung eines Anfangswertproblems nicht eindeutig bestimmt ist. In diesem Beispiel ist das Vektorfeld nach ableitbar, die Ableitung ist aber nicht stetig, so dass Fakt nicht anwendbar ist.


Wir betrachten das Anfangswertproblem

zum zeitunabhängigen Vektorfeld

Offensichtlich gibt es die stationäre Lösung

aber auch

ist eine Lösung, wie man durch Nachrechnen sofort bestätigt. Aus diesen beiden Lösungen kann man sich noch weitere Lösungen basteln. Es seien dazu reelle Zahlen. Dann ist auch

eine Lösung. D.h. es gibt Lösungen, bei denen das Teilchen beliebig lange (im Zeitintervall von nach ) ruht und danach (und davor) sich bewegt. Sobald sich das Teilchen in einem Punkt befindet, ist der Bewegungsablauf lokal eindeutig bestimmt.


Zu einem stetigen Vektorfeld

kann man sich fragen, ob es ein maximales Definitionsintervall für die Lösung eines Anfangswertproblems

gibt. Dies ist in der Tat der Fall, wenn das Vektorfeld lokal einer Lipschitz-Bedingung genügt! Man kann nämlich alle Teilmengen

betrachten. Wegen Fakt stimmen zwei Lösungen und auf dem Durchschnitt überein, und liefern daher eine eindeutige Lösung auf der Vereinigung . Daher enthält die Menge der Teilintervalle, auf denen eine Lösung definiert ist, ein maximales Teilintervall .

Dieses Teilintervall kann kleiner als sein. Die Grenzen des maximalen Teilintervalls, auf dem eine Lösung definiert ist, heißen auch Entweichzeiten.