Kurs:Topologische Invertierbarkeitskriterien/Gaugefunktionale
Einleitung
BearbeitenIn reellen Zahlen gibt es den Betrag, um z.B. Konvergenz im Raum ausdrücken zu können. Mit dem Betrag kann man -Umgebungen definieren und die Folgenkonvergenz wird über diese -Umgebungen definiert. Ferner werden zu kreisförmigen Nullumgebungen Minkowski-Funktionale definiert, in Abhängigkeit von topologischen Eigenschaften der Menge bestimmte Eigenschaften der Minkowski-Funktionale liefert.
Konvergenz in den reellen Zahlen
BearbeitenDie reellen Zahlen mit dem Betrag ist ein normierter Raum und eine Folge in und :
Konvergenz in normierten Räumen
BearbeitenAnalog definiert man die Konvergenz in normierten Räumen eine Folge in und :
Epsilonumgebungen
BearbeitenDie Betrag bzw. allgemeiner die Norm wird in auch zur Definition der -Umgebungen verwendet.
Diese topologieerzeugenden Funktionale (Gaugefunktionale) werden für die Definition der Algebraerweiterungen benötigt, in den ein gegebenes ein inverses Element besitzt. Die Topologisierung der Potenzreihenalgebra erfolgt später mit Gaugefunktionalen (z.B. Halbnormen, -Halbnormen, ...)
Absorbierende Mengen
BearbeitenDie Gaugefunktionale werden über kreisförmige absorbierende Nullumgebungen definiert, für die dann das zugehörige Minkowskifunktional das zugehörige Gaugefunktional erzeugt. Die Grundlagen liefert die folgende Abschnitte.
Einführung Gaugefunktionale
BearbeitenBei der Verwendung von Gaugefunktionalen werden die definierenden Eigenschaften einer Norm weiter verallgemeinert, um in analoger Weise topologieerzeugende Funktionale in beliebigen topologischen Algebren verwenden zu können. Dadurch wird es nicht mehr notwendig sein, z.B. Stetigkeit über die offene Mengen aus der Topologie zu beschreiben (siehe auch Stetigkeitssatz für lineare Abbildungen).
Definition: p-homogen
BearbeitenSei ein Vektorraum über . Ein Funktional heißt -homogen, falls es ein mit gibt, für das gilt:
Ist , so heißt homogen. heißt nicht-negativ, falls für alle gilt .
Definition: p-Gaugefunktional
BearbeitenSei ein Vektorraum über . Ein nicht-negatives, -homogenes Funktional heißt -Gaugefunktional auf und für Gaugefunktional.
Beispiel: p-Gaugefunktional
BearbeitenSei und , dann ist ein -Gaugefunktional auf .
Aufgabe: p-Gaugefunktional
BearbeitenGegeben ist der Vektorraum und das -Gaugefunktional . Zeigen Sie, dass aber . Welche Mengeninklusion gilt allgemein für und mit und ?
Bemerkung
BearbeitenDie -Homogenität hat einerseits eine engen Zusammenhang zur Stetigkeit der Multiplikation mit Skalaren und das bestimmt den Zusammenhang mit eine Quasihalbnorm.
Definition: p-Gaugefunktionalsystem
BearbeitenSei ein Vektorraum über , eine Indexmenge und für alle sei ein -Gaugefunktional auf . Dann wird mit die Menge aller -Gaugefunktionale mit Indizes aus bezeichnet, d.h.
heißt System von -Gaugefunktionalen. Ist nennt man Gaugefunktionalsystem.
Definition: Äquivalenz von p-Gaugefunktionalsystemen
BearbeitenSei ein Vektorraum über und , zwei -Gaugefunktionalsysteme auf . Die -Gaugefunktionalsysteme und heißen äquivalent, wenn folgende beiden Bedingungen gelten:
- (EQ1)
- (EQ2)
Beispiel: p-Gaugefunktionalsystem
BearbeitenSei und die Menge der stetigen Funktion von nach . Die Menge der -Gaugefunktional wird mit wie folgt definiert:
mit
Definition: Basiserzeugendes p-Gaugefunktionalsystem
BearbeitenSei ein topologischer Vektorraum mit dem System von offenen Mengen auf . Ferner sei eine Menge von -Gaugefunktionalen auf . Das -Gaugefunktionalsystem heißt basiserzeugend für , wenn gilt:
- (BE1)
- (BE2)
Bemerkung: Basiserzeugendes p-Gaugefunktionalsystem
Bearbeiten- (BE1) bedeutet dabei, dass die -Kugeln selbst offene Mengen sind.
- Mit (BE2) lässt sich jede offene Menge aus der Topologie als Vereinigung von -Kugeln darstellen. Da beliebige Vereinigungen von offenen Mengen in einem topologischen Raum nach Axiom (T3) auch wieder offen sein müssen, ist damit die Vereinigung von -Kugeln mit , und selbst wieder offen.
Definition: Subbasiserzeugendes p-Gaugefunktionalsystem
BearbeitenSei ein topologischer Vektorraum mit dem System von offenen Mengen auf . Ferner sei eine Menge von -Gaugefunktionalen auf . Das -Gaugefunktionalsystem heißt subbasiserzeugend für , wenn gilt mit :
- (SE1)
- (SE2)
mit
Bemerkung: Unterschied topologieerzeugend - subbasiserzeugend
BearbeitenBei einem topologieerzeugenden -Gaugefunktionalsystem vereinfacht (T2) man die Handhanbung von endlichen Schnitten offener Mengen in einer Topologie. (S2) muss daher endliche Schnitte der von Umgebungen berücksichtigen, indem man den Schnitt -Kugeln durch die Bedingung
mit verlangt.
Definition: unital positiv
BearbeitenSei eine unitale topologische Algebra über mit dem Einselement der Multiplikation . Das -Gaugefunktionalsystem heißt unital positiv genau dann, wenn für alle die Bedingung .
Bemerkung: unital positives äquivalentes Gaugefunktionalsystem
BearbeitenMan kann ein -Gaugefunktionalsystem auf einer topologischen Algebra durch eine äquivalentes unital positives -Gaugefunktionalsystem ersetzen, indem man die Trennungseigenschaft eines Hausdorffraumes dazu verwendet, Minkowkifunktionale von kreisförmigen Nullumgebungen verwendet, die das Einselement nicht enthalten. Dann erhält man unmittelbar sogar , wenn und als Minkowski-Funktional der absorbiernden Nullumgebung verwendet wird.
Bemerkung: p-Norm und Norm
BearbeitenDer Begriff der Norm ist ein Spezialfall einer -Norm mit , die im folgenden definiert wird.
Definition: Norm
BearbeitenSei ein topologischer Vektorraum über dem Körper . Ein Funktional heißt Norm auf , falls folgende Bedingungen erfüllt:
- (N1)
- (N2)
- (N3)
- (N4)
Definition: Halbnorm
BearbeitenSei ein topologischer Vektorraum über dem Körper . Ein Funktional heißt Halbnorm auf , falls folgende Bedingungen erfüllt:
- (H1)
- (H2)
- (H3)
Bemerkung: Halbnorm - Norm
BearbeitenFalls (N2) in der Definition der Norm nicht gilt, erhält man eine Halbnorm. (N2) sorgt für die Hausdorfeigenschaft in dem topologischen Vektorraum. Man kann mit der Norm die Punkte trennen, d.h. mit der Norm man messen, ob zwei Vektoren sich unterscheiden, d.h. bzw. gilt.
Multiplikativ konvex - Submultiplikativität der Halbnorm
BearbeitenEin Halbnorm ist submultiplikativ mit einer Stetigkeitskonstante , wenn für alle gilt:
nennt man Stetigkeitskonstante der Multiplikation. Man kann die Halbnorm durch eine äquivalente Halbnorm ersetzen, für die ist (siehe MLC-Regularität).
Lemma: Stetigkeitskonstante und Submultiplikativität
BearbeitenSei eine lokalkonvexe topologische Algebra mit dem basiserzeugenden Halbnormensystem und eine submultiplikative Halbnorm mit Stetigkeitskonstante und gegeben mit:
dann gibt es eine äquivalente Halbnorm mit
Beweis: Stetigkeitskonstante und Submultiplikativität
BearbeitenIst erhält die Submultiplikativität direkt mit
Beweis: Definition der Halbnorm
BearbeitenGilt nun , so definiert man für alle :
und man erhält die Submultiplikativität über:
Beweis: Äquivalenz der Halbnormen
BearbeitenDie Äquivalenz der Halbnormen erhält man unmittelbar aus der Definition mit , denn es gilt:
Bemerkung: Submultiplikativität
BearbeitenIst eine topologische Algebra ein normierter Raum, so kann man im Allgemeinen nur sagen, dass die Submultiplikativität der Halbnorm mit einer bestimmten Stetigkeitskonstante der Multiplikation erfüllt, da die -Kugeln um den Nullvektor eine Nullumgebungsbasis erzeugen. Das Lemma zeigt, dass man ohne Einschränkung eine Halbnorm mit Stetigkeitskonstante auch durch eine äquivalente submultiplikative Halbnorm ersetzen kann. Das Vorgehen kann man analog für lokalbeschränkte Räume übernehmen.
Definition: p-Norm
BearbeitenSei ein Vektorraum über dem Körper und . Ein Funktional heißt -Norm auf , falls folgende Bedingungen erfüllt:
- (PN1)
- (PN2)
- (PN3)
- (PN4)
Bemerkung
BearbeitenFür kann man ein -Norm auch zu einer Norm machen, indem man die Norm wie folgt definert:
Beispiel
BearbeitenSei mit und betrachtet man die Mengen der -summierbaren Reihen in den reellen Zahlen.
ist eine -Norm auf dem -Vektorraum .
Definition: p-Normierbarkeit
BearbeitenSei heißt -normierbar oder lokal beschränkt mit der Konkavitätskonstante , falls eine -Norm
- ,
existiert, die die Topologie auf erzeugt (formal ).
Definition: p-Halbnorm
BearbeitenSei ein topologischer Vektorraum über dem Körper und . Ein Funktional heißt -Halbnorm auf mit als Konkavitätskonstante., falls folgende Bedingungen erfüllt:
- (PH1)
- (PH2)
- (PH3)
Bemerkung: p-Norm - p-Halbnorm
BearbeitenFalls (PN2) in der Definition der -Norm nicht gilt, heißt -Halbnorm mit als Konkavitätskonstante. Analog zur Halbnorm kann eine einzelne -Halbnorm nicht die Punkte im topologischen Vektorraum trennen (Hausdorfeigenschaft T2).
Multiplikativ pseudokonvex - Submultiplikativität der p-Halbnorm
BearbeitenEin -Halbnorm ist submultiplikativ mit einer Stetigkeitskonstante , wenn für alle gilt:
nennt man Stetigkeitskonstante der Multiplikation. Man kann die - Halbnorm durch eine äquivalente -Halbnorm ersetzen, für die ist (siehe MPC-Regularität).
Definition: pseudokonvexer Vektorraum
BearbeitenSei heißt pseudokonvex, falls die Topologie durch ein System von -Halbnormen erzeugt wird, das die folgenden Eigenschaften besitzt.
- ,
Formal notiert man .
Bemerkung: topologieerzeugende p-Norm
BearbeitenEine -Norm ist topologieerzeugend für die Topologie , wenn die folgende Bedingung gilt:
Die -Kugeln werden im weiteren Verlauf für die Charakterisierung der Stetigkeit verwendet.
Definition: Epsilonkugeln von p-Gaugefunktionalen
BearbeitenSei ein Vektorraum und ein -Gaugefunktional auf , dann ist die -Kugel von mit um einen Punkt (Bezeichnung: ) wie folgt definiert:
Definition: Quasinorm
BearbeitenSei ein topologischer Vektorraum über dem Körper . Ein Funktional
heißt Quasinorm auf , falls folgende Bedingungen erfüllt:
- (QN1)
- (QN2)
- (QN3)
- (QN4)
Definition: Quasihalbnorm
BearbeitenEin Funktional auf einem Vektorraum über dem Körper heißt Quasihalbnorm mit Stetigkeitskonstante der Addition , falls die folgende Bedingungen erfüllt:
- (QH1)
- (QH2)
- (QH3)
Bemerkung: Quasinorm - Quasihalbnorm
BearbeitenAnalog zu Halbnormen und Normen bzw. -Normen und -Halbnormen wird eine Quasinorm zu einer Quasihalbnorm mit Stetigkeitskonstante der Addition, falls (QN2) nicht mehr gilt.
Bemerkung: Stetigkeitskonstante
BearbeitenDie Stetigkeitskonstante hängt mit der Konkavitätskonstante einer -Norm bzw. -Halbnorm zusammen. Dies zeigt das Korrespondenzlemma für -Halbnormen
Konvergenz über Netze
BearbeitenSei eine topologischer Raum, und ein Netz in mit einer Indexmenge , die nach oben gerichtet ist und eine partielle Ordnung besitzt. Die Konvergenz über Netze wird wie folgt definiert:
Definition: Algebrenklassen
BearbeitenDie Unterscheidung nach Algebrenklassen ist für die Untersuchung von permanent singulären Elemente wesentlich, da die Invertierbarkeit in einer Algebraerweiterung von der Klasse abhängt.
Notation 1: Algebrenklassen
BearbeitenSei eine Klasse topologischer Algebren und ein Körper, dann werden mit folgenden Symbolen Teilklassen topologischer Algebren bezeichnet:
- Klasse der unitalen Algebren in ;
- Klasse der kommutativen Algebren in , "kommutativ" bezieht sich auf die Multiplikation in den Algebren.
- Klasse der topologischen Algebren über in ;
Notation 2: Algebrenklassen
Bearbeiten- Klasse aller topologischen Algebren;
- Klasse aller Banachalgebren (vollständig, normiert);
- Klasse der lokalkonvexen Algebren; d.h. Topologie durch ein System von Halbnormen erzeugt;
- Klasse der multiplikativ lokalkonvexen Algebren;
Notation 3: Algebrenklassen
Bearbeiten- Klasse der -normierbaren Algebren bzw. lokal beschränkten Algebren;
- Klasse der pseudokonvexen Algebren; & d.h. Topologie durch ein System von -Halbnormen erzeugt;
- Klasse der multiplikativ pseudokonvexen Algebren.
Bemerkung: Pseudokonvexe Räume
BearbeitenFür pseudokonvexe Algebren kann das -System auch aus den entsprechenden Quasihalbnormen bestehen. Mit dem Korrespondenzsatz für -Halbnormen wird der Zusammenhang von -Halbnormen und Quasihalbnormen erläutert. Ferner müssen nicht alle -Halbnormen die gleiche Konkavitätskonstante (siehe Definition Gaugefunktional) besitzen, d.h. für gilt
Aufgabe 1: Norm
BearbeitenZeichnen Sie die -Kugel in mit und
Zeichnen Sie den Rand der -Kugeln bzgl. der Norm mit
- und
- und
Aufgabe 2: p-Norm
BearbeitenZeichnen Sie die -Kugel in mit und
Zeichnen Sie den Rand der -Kugeln bzgl. der Norm mit
- und
- und
Siehe auch
BearbeitenSeiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Topologische Invertierbarkeitskriterien' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Kurs:Topologische%20Invertierbarkeitskriterien/Gaugefunktionale
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.