Stetigkeitssatz für lineare Abbildungen
Einleitung
BearbeitenDer Stetigkeitssatz für lineare Abbildungen liefert äquivalente Bedingungen zu Stetigkeit, die mit topologieerzeugende Funktionalen (Normen, Halbnormen, Gaugefunktionale).
- (Normierte Räume - SLA) In diesem Spezialfall von normierte Räume sind spezielle topologische Vektorräume äquivalente Bedingungen zur Stetigkeit von linearen Abbildungen über Normen formuliert.
- (Topologische Vektorräume - SLAT) Danach wird dieser Stetigkeitssatz für lineare Abbildung danach auf topogische Vektorräume verallgemeinert.
Lineare Abbildungen - endlichdimensionale Vektorräume
BearbeitenLineare Abbildung von einem endlichdimensionalen -Vektorraum in einen -Vektorraum sind immer stetig.
Lineare Abbildungen - nicht stetig
BearbeitenLineare Abbildung von einem unendlichdimensionalen -Vektorraum in einen -Vektorraum sind auch nicht stetig sein (siehe Beispiele für lineare Abbildungen, die nicht stetig sind.
Stetigkeitssatz für lineare Abbildung - normierte Räumen
BearbeitenSeien und normierte Räume über dem Körper und
- eine lineare Abbildungen, dann sind folgende Aussagen äquivalent:
- (1) T ist stetig in jedem Punkt
- (2) T ist stetig im Nullvektor
- (3) Es existiert ein mit für alle mit
- (4) Es existiert ein mit für alle ,
Beweis
BearbeitenDer Beweis erfolgt als Ringschluss von (1) (2) (3) (4) (1)
Korrollar SLA für bilineare Abbildungen
BearbeitenDie Aussage des Stetigkeitssatzes gilt analog für bilineare Abbildungen und normierte Räume: Seien , und normierte Räume über dem Körper und
- eine bilineare Abbildungen, dann sind folgende Aussagen äquivalent:
- (1) T ist stetig in jedem Punkt
- (2) T ist stetig im Nullvektor
- (3) Es existiert ein mit für alle mit
- (4) Es existiert ein mit für alle ,
Bemerkung - Produktraum als Vektorraum
BearbeitenDer Produktraum wird in natürlicher Weise zu einem -Vektorraum durch die folgenden Verknüpfungen :
Mit wird ebenfalls zu einem normierten Raum.
Bedeutung des Korrolars
BearbeitenFür das Topologisierungslemma für Algebren ist es hilfreich, die Stetigkeit einem Punkt nachweisen zu müssen. Multiplikation mit Skalaren und die Multiplikation auf der Algebra sind in diesem Kontext bilineare Abbildungen. Dabei ist z.B. und mit die submultiplikative Norm auf der Algebra .
Aufgabe - Beweis Korollar
BearbeitenBeweisen Sie das obige Korollar unter Verwendung der Beweisideen aus dem Stetigkeitssatz für lineare Abbildungen. Hinweise:
- Nutzen Sie dabei die Äquivalenz von
.
- Nutzen Sie für die Abschätzung für die Linearität in jeder Komponente.
Aufgabe - Äquivalenz der Normen - Produktraum
BearbeitenIn dem obigen Korollar wird eine Norm auf definiert. Zeigen Sie, dass eine äquivalente Norm auf ist.
Operatornorm
BearbeitenDie Bedingung (4) aus dem Stetigkeitssatz für lineare Abbildungen führt zur Einführung der Operatorraum. Damit macht man den Vektorraum der stetigen linearen Funktionen als Teilmenge aller linearen Abbildungen selbst zu einem normierten Raum. (der Index in steht für "continuous" stetig).
Alternative Aussage
BearbeitenAlternativ zu (3) kann man die Aussage auch wie folgt formulieren
- (3') Es existiert ein mit
Dies ist äquivalent zu
Definition: Operatornorm
BearbeitenSeien und normierte Vektorräume über dem Körper und die Menge der linearen Abbildung von nach . sei ein linearer Operator. Dann ist die Operatornorm
bezüglich der Vektornormen und durch
definiert.
Bemerkung - Operatornorm
BearbeitenDie Operatornorm liefert eine kleinste obere Schranke für die Streckung von Vektoren aus der der Einheitskugel in .
Lineare Abbildungen mit endlichdimensionalem Definitionbereich
BearbeitenFür endlichdimensionale Vektorräume ist diese Unterscheidung nicht notwendig, da jede endlichdimensionale lineare Abbildung stetig ist.
Aufgabe 1
BearbeitenBeweisen Sie den Satz, dass lineare Abbildungen mit einem endlichdimensionalen Definitionsbereich stetig sind.
Beweisidee
BearbeitenSei und eine Basis von nomierten Vektoren für (d.h. für alle ).
- Nutzen Sie die Aussage (3) aus dem Stetigkeitssatz für lineare Abbildungen.
- Wählen Sie aus der abgeschlossenen Einheitskugel .
- Stellen Sie als Linearkombination der Basisvektoren dar.
- Schätzen Sie die Norm nach oben ab.
Bemerkung: Stetigkeit und Normbeschränktheit
BearbeitenBei stetigen linearen Abbildung von einem normierten Raum nach ist das Bild der abgeschlossenen Einheitskugel bzgl. der Norm beschränkt.
Stetigkeitssatz für lineare Abbildung auf topologischen Vektorräumen
BearbeitenSeien und topologische Vektorräume mit den Systemen von topologieerzeugenden Gaugefunktionalen über dem Körper und
- eine lineare Abbildungen, dann sind folgende Aussagen äquivalent:
- (1) T ist stetig in jedem Punkt
- (2) T ist stetig im Nullvektor
- (3)
- (4) ,
Beweis SLAT
BearbeitenAuch der Stetigkeitssatz für Lineare Abbildung auf topologischen Vektorräumen (SLAT) wird als Ringschluss von (1) (2) (3) (4) (1) bewiesen.
Korrollar SLAT für bilineare Abbildungen
BearbeitenDie Aussage des Stetigkeitssatzes gilt analog für bilineare Abbildungen und normierte Räume: Seien , und normierte Räume über dem Körper und
- eine bilineare Abbildungen, dann sind folgende Aussagen äquivalent:
- (1) T ist stetig in jedem Punkt
- (2) T ist stetig im Nullvektor
- (3) für alle mit
- (4) für alle ,
Gaugefunktionale und partielle Ordnung
BearbeitenDie Indexmengen der Netze werden in Abhängigkeit von der Indexmenge der Gaugefunktionale gewählt. ist dabei eine geeignete Wahl (siehe Gaugefunktionale und partielle Ordnung).
Siehe auch
Bearbeiten- Stetigkeitssatz für normierte Räume
- Stetigkeitssatz für topologische Vektorräume
- bilineare Abbildungen
- Netze (Mathematik)
- Hahn-Banach - normierte Räume
- Kurs:Funktionalanalysis
- Kontraposition
- Konvergenz in normierten Räumen
- Normenäquivalenzsatz
- Stetigkeit in topologischen Räumen
- Submultiplikativität
- Kurs:Maßtheorie auf topologischen Räumen
Seiteninformation
BearbeitenDiese Lernresource wurde als Wiki2Reveal Foliensatz erstellt.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Funktionalanalysis' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Stetigkeitsatz_f%C3%BCr_Lineare_Abbildungen
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.