Kurs:Analysis/Teil I/29/Klausur/kontrolle


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Punkte 3 3 2 3 5 4 5 4 6 5 2 7 2 5 1 3 4 64








Erläutere das Prinzip Beweis durch Widerspruch.



Ein Zug fährt Kilometer den Rhein abwärts mit einer Geschwindigkeit von kmh. Auf dem Rhein fahren Schiffe in beide Richtungen, alle mit einer Geschwindigkeit von kmh, wobei sie zu den gleichgerichteten Schiffen einen konstanten Abstand von km einhalten. Zu Beginn der Fahrt ist der Zug gleichauf mit zwei Schiffen (in beide Richtungen).

  1. Wie vielen entgegenkommenden Schiffen begegnet der Zug?
  2. Wie viele Schiffe überholt der Zug?



Es seien zwei rationale Zahlen gegeben. Zeige, dass für jede positive natürliche Zahl die rationale Zahl

echt zwischen und liegt. In welcher Größenbeziehung stehen die Zahlen zueinander?



Beweise den Satz über die Konvergenz der geometrischen Reihe.



Es sei eine reelle Zahl. Zeige, dass die folgenden Eigenschaften äquivalent sind.

  1. Es gibt ein Polynom , , mit ganzzahligen Koeffizienten und mit .
  2. Es gibt ein Polynom , , mit .
  3. Es gibt ein normiertes Polynom mit .



Führe in die Division mit Rest durch “ für die beiden Polynome und durch.



Bestimme, ob die Funktion

gleichmäßig stetig ist oder nicht.



Es sei . Bestimme ein Polynom vom Grad , das in den beiden Punkten und die gleichen linearen Approximationen wie besitzt.



Bestimme den Grenzwert



Beweise die Charakterisierung mit Ableitungen von konvexen Funktionen .





Wir betrachten eine Funktion der Form

wobei und lineare Polynome seien. Zeige durch Induktion, dass für die Ableitungen () die Beziehung

gilt.



Bestimme eine Stammfunktion für die Funktion



Berechne das bestimmte Integral zur Funktion

über .



Löse das Anfangswertproblem