Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Arbeitsblatt 28



Übungsaufgaben

Die Süddeutsche Zeitung schrieb am 10.3.2020 unter dem Titel „Die Wucht der großen Zahl“ (von Christian Endt, Michael Mainka und Sören Müller-Hansen):

„Um zu verstehen, warum das neue Coronavirus so gefährlich ist, muss man sich klarmachen, was exponentielles Wachstum bedeutet. Der Begriff ist etwas sperrig, das Konzept dahinter aber einfach. Es geht um eine Vermehrung, die sich ständig selbst beschleunigt. Und dieses Muster lässt sich auch beim Coronavirus erkennen. Das ist der Hintergrund, warum nun immer strengere Auflagen verhängt werden, Fußballspiele ohne Publikum ausgetragen, Feste und Kongresse abgesagt werden. Und warum Gesundheitsminister Jens Spahn, Kanzlerin Angela Merkel und andere davon sprechen, man müsse die Ausbreitung des Virus verlangsamen. Sprich: Verhindern, dass es sich exponentiell verbreitet.“

  1. Beschleunigt sich lineares Wachstum „ständig selbst“?
  2. Beschleunigt sich quadratisches Wachstum wie bei der Funktion „ständig selbst“?
  3. Wie kann man exponentielles Wachstum charakterisieren?
  4. Wenn man exponentielles Wachstum „verlangsamen“ möchte, verhindert man dann exponentielles Wachstum oder ändert man Parameter (welche?) für exponentielles Wachstum?



  1. Es sei und die Exponentialfunktion zur Basis . Zeige, dass es ein mit für alle gibt.
  2. Es sei vorgeben. Zeige, dass es eine Exponentialfunktion mit und mit

    für alle gibt.

  3. Man gebe ein Beispiel für eine stetige, streng wachsende Funktion mit für alle , die keine Exponentialfunktion ist.



Bestimme, für welche die Differentialgleichung mit Verzögerung

eine Lösung der Form

besitzt.



Finde alle Lösungen zur gewöhnlichen Differentialgleichung



Finde alle Lösungen zur gewöhnlichen Differentialgleichung



Löse das Anfangswertproblem



Löse das Anfangswertproblem



Löse das Anfangswertproblem



Löse das Anfangswertproblem



Man mache sich anschaulich und mathematisch klar, dass bei einer ortsunabhängigen Differentialgleichung der Abstand zwischen zwei Lösungen und zeitunabhängig ist, d.h. dass konstant ist.

Man gebe ein Beispiel, dass dies bei zeitunabhängigen Differentialgleichungen nicht der Fall sein muss.



Untersuche die gewöhnlichen Differentialgleichungen, die sowohl zeit- als auch ortsunabhängig sind.



Wie sieht der Graph einer Abbildung

aus, die nur von einer Variablen abhängt.


Die folgende Aufgabe setzt Aufgabe 19.18 voraus.


Es sei

die Menge der differenzierbaren Funktionen. Bestimme die Eigenwerte, die Eigenvektoren und die Dimension der Eigenräume der Ableitung



Finde die Lösungen für die gewöhnliche Differentialgleichung

mit .

Finde eine inhaltliche Interpretation zu dieser Differentialgleichung analog zu Beispiel 28.12.


Zeige, dass () eine Lösung der gewöhnlichen Differentialgleichung

auf ist.



a) Es sei

ein nullstellenfreies Vektorfeld, d.h. für alle . Zeige, dass jede Lösungskurve zur Differentialgleichung

injektiv ist.

b) Es sei nun ein zeitunabhängiges Vektorfeld. Zeige, dass genau dann nullstellenfrei ist, wenn jede Lösungskurve injektiv ist.

c) Man gebe ein Beispiel für ein Vektorfeld, das nicht nullstellenfrei ist, für das aber jede Lösungskurve injektiv ist.



Finde eine differenzierbare Funktion (nicht die Nullfunktion), die die Bedingung

erfüllt (dabei ist als der Wert der Funktion an der Stelle zu verstehen, nicht als das Produkt der Funktionsvariablen mit ; es handelt sich also nicht um eine Differentialgleichung).



Finde einen zweidimensionalen Lösungsraum für die Differentialgleichung zweiter Ordnung

Löse damit das Anfangswertproblem



Finde einen zweidimensionalen Lösungsraum für die Differentialgleichung zweiter Ordnung

Löse damit das Anfangswertproblem



Finde einen zweidimensionalen Lösungsraum für die Differentialgleichung zweiter Ordnung

mit .



Zeige, dass die Menge aller Lösungen der Differentialgleichung

einen -dimensionalen reellen Vektorraum bilden.




Aufgaben zum Abgeben

Aufgabe (2 Punkte)

Löse das Anfangswertproblem



Aufgabe (3 Punkte)

Finde eine Lösung zur gewöhnlichen Differentialgleichung



Aufgabe (4 Punkte)

Löse das Anfangswertproblem



Aufgabe (4 Punkte)

Löse das Anfangswertproblem

auf mit der Anfangsbedingung .

Tipp: Man schreibe Sinus hyperbolicus mit der Exponentialfunktion, führe die Substitution durch und finde so eine Stammfunktion.


Aufgabe (4 Punkte)

Finde alle polynomialen Lösungen der Differentialgleichung dritter Ordnung



Aufgabe (5 Punkte)

Zeige, dass es zu jedem unendlich oft differenzierbare Funktionen

derart gibt, dass die -te Ableitung mit übereinstimmt, die Ableitungen , , aber nicht.

Tipp=Denke an Potenzreihen.



<< | Kurs:Analysis (Osnabrück 2021-2023)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)