Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Arbeitsblatt 3/kontrolle
- Übungsaufgaben
Zeige, und zwar allein unter Bezug auf Rechengesetze in , dass die durch
definierte Addition und Multiplikation auf den rationalen Zahlen wohldefiniert ist, und dass die Assoziativität, die Kommutativität und das Distributivgesetz gelten.
Es seien Elemente in einem Körper, wobei und nicht seien. Beweise die folgenden Bruchrechenregeln.
Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation (und die Subtraktion mit der Division) vertauscht, also
Zeige, dass die „beliebte Formel“
nicht gilt.
Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge
eine „Addition“ und eine „Multiplikation“, die diese Regeln „repräsentieren“.
Zeige, dass die einelementige Menge alle Körperaxiome erfüllt mit der einzigen Ausnahme, dass ist.
Es sei ein Körper. Zeige, dass man jeder natürlichen Zahl ein Körperelement zuordnen kann, derart, dass das Nullelement in und das Einselement in ist und dass
gilt. Zeige, dass diese Zuordnung die Eigenschaften
besitzt.
Erweitere diese Zuordnung auf die ganzen Zahlen und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.
Besitzen Sie eine geometrische Intuition zur Addition von zwei gegebenen Zahlen auf der reellen Zahlengeraden?
Besitzen Sie eine geometrische Intuition zur Multiplikation von zwei gegebenen Zahlen auf der reellen Zahlengeraden?
Zwei Personen, und , liegen unter einer Palme, besitzt Fladenbrote und besitzt Fladenbrote. Eine dritte Person kommt hinzu, die kein Fladenbrot besitzt, aber Taler. Die drei Personen werden sich einig, für die Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt an und an ?
Die Partei „Zukunft für alle“ hat zwei Ziele.
- Millionäre entschädigungslos enteignen.
- Ein bedingungsloses monatliches Grundeinkommen von Euro für jeden Erwachsenen.
Hans hat kein Geld und hat mit Geld auch nichts am Hut, er ist jetzt gerade geworden und lebt allein auf einem kleinen Bauernhof als Selbstversorger, ohne Einnahmen, ohne Ausgaben, und das soll in seinem Leben auch so bleiben. Vorausgesetzt, das Parteiprogramm wird Gesetz, wie alt muss Hans (in Jahren und Monaten) werden, bis er enteignet wird?
Man gebe die Antworten als Bruch (bezogen auf das angegebene Vergleichsmaß): Um wie viel ist eine Dreiviertelstunde länger als eine halbe Stunde, und um wie viel ist eine halbe Stunde kürzer als eine Dreiviertelstunde?
Man erläutere die Uhrzeitangaben „halb fünf“, „viertel fünf“, „drei viertel fünf“. Was würde „ein sechstel fünf“ und „drei siebtel fünf“ bedeuten?
Es sei ein Körper und seien Elemente aus . Beweise die folgenden Potenzgesetze für natürliche Exponenten .
Es sei ein Körper und seien Elemente aus . Beweise die folgenden Potenzgesetze für ganzzahlige Exponenten . Dabei darf man die entsprechenden Gesetze für Exponenten aus sowie die Tatsachen, dass das Inverse des Inversen wieder das Ausgangselement ist und dass das Inverse von gleich ist, verwenden.
Die Folge , sei rekursiv durch
definiert. Zeige, dass für
gilt.
Beweise durch Induktion die folgende Formel.
Heinz-Peter schaut am Morgen in den Spiegel und entdeckt fünf Pickel auf seiner Stirn. Diese müssen alle ausgedrückt werden, wobei zwei Pickel so nah beieinander liegen, dass sie unmittelbar hintereinander behandelt werden müssen. Wie viele Reihenfolgen gibt es, die Pickel auszudrücken?
Vor einem Fußballspiel begrüßt jeder der elf Spieler einer Mannschaft jeden Spieler der anderen Mannschaft, jeder Spieler begrüßt die vier Unparteiischen und diese begrüßen sich alle untereinander. Wie viele Begrüßungen finden statt?
Zeige, dass die Binomialkoeffizienten natürliche Zahlen sind.
Es sei eine -elementige Menge. Zeige, dass die Anzahl der -elementigen Teilmengen von gleich dem Binomialkoeffizienten
ist.
Beweise die Formel
- Aufgaben zum Abgeben
Aufgabe (2 Punkte)Referenznummer erstellen
Aufgabe (4 Punkte)Referenznummer erstellen
Wir versehen die Menge mit den beiden Operationen
und
Zeige durch möglichst wenige Rechnungen, dass mit diesen Verknüpfungen zu einem
Körper
wird.
Aufgabe (3 Punkte)Referenznummer erstellen
Zeige, dass die „Rechenregel“
bei (und ) niemals gilt. Man gebe ein Beispiel mit , wo diese Regel gilt.
Wir betrachten die Menge
mit den beiden ausgezeichneten Elementen
der Addition
und der Multiplikation
Zeige, dass mit diesen Operationen ein Körper ist.
Aufgabe (3 Punkte)Referenznummer erstellen
Beweise die Formel