Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Arbeitsblatt 19/kontrolle



Übungsaufgaben

Es sei ein Körper und es seien und Vektorräume über . Zeige, dass auch das Produkt

ein -Vektorraum ist.



Es sei ein Körper und ein - Vektorraum. Es seien und . Zeige



Aufgabe Aufgabe 19.3 ändern

Man mache sich klar, dass sich die Addition und die skalare Multiplikation auf einen Untervektorraum einschränken lässt und dass dieser mit den von geerbten Strukturen selbst ein Vektorraum ist.



Überprüfe, ob die folgenden Teilmengen des Untervektorräume sind:

  1. ,
  2. ,
  3. ,
  4. .



Aufgabe * Aufgabe 19.5 ändern

Es sei ein Körper und

ein homogenes lineares Gleichungssystem über . Zeige, dass die Menge aller Lösungen des Gleichungssystems ein Untervektorraum des ist. Wie verhält sich dieser Lösungsraum zu den Lösungsräumen der einzelnen Gleichungen?



Es sei ein Körper und ein - Vektorraum. Es seien Untervektorräume. Zeige, dass die Vereinigung nur dann ein Untervektorraum ist, wenn oder gilt.



Es sei ein Körper und eine Indexmenge. Zeige, dass

mit stellenweiser Addition und skalarer Multiplikation ein -Vektorraum ist.



Es sei ein Körper, und seien zwei Indexmengen. Zeige, dass dann in natürlicher Weise ein Untervektorraum von ist.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)Aufgabe 19.9 ändern

Es sei ein Körper und ein - Vektorraum. Zeige, dass die folgenden Eigenschaften gelten (dabei sei und ).

  1. Es ist .
  2. Es ist .
  3. Es ist .
  4. Aus und folgt .



Man gebe ein Beispiel für einen Vektorraum und von drei Teilmengen in an, die jeweils zwei der Untervektorraumaxiome erfüllen, aber nicht das dritte.