Kurs:Lineare Algebra/Teil I/51/Klausur mit Lösungen



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Punkte 3 3 2 3 2 4 3 5 3 1 0 2 8 4 0 3 2 4 52




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die Hintereinanderschaltung der Abbildungen

    und

  2. Die Matrizenmultiplikation.
  3. Der von einer Familie von Vektoren , aus einem - Vektorraum aufgespannte Untervektorraum.
  4. Die Elementarmatrizen.
  5. Ein Gruppenhomomorphismus zwischen Gruppen und .
  6. Ein affiner Raum über einem - Vektorraum .


Lösung

  1. Die Abbildung

    heißt die Hintereinanderschaltung der Abbildungen und .

  2. Es sei ein Körper und es sei eine - Matrix und eine -Matrix über . Dann ist das Matrixprodukt

    diejenige -Matrix, deren Einträge durch

    gegeben sind.

  3. Man nennt

    den von der Familie aufgespannten Untervektorraum.

  4. Mit bezeichnen wir diejenige - Matrix, die an der Stelle den Wert und sonst überall den Wert null hat. Dann nennt man die folgenden Matrizen Elementarmatrizen.
    1. .
    2. .
    3. .
  5. Eine Abbildung

    heißt Gruppenhomomorphismus, wenn die Gleichheit

    für alle gilt.

  6. Ein affiner Raum über einem - Vektorraum ist (die leere Menge oder) eine nichtleere Menge zusammen mit einer Abbildung

    die den drei Bedingungen

    1. für alle ,
    2. für alle und ,
    3. Zu je zwei Punkten gibt es genau einen Vektor mit ,

    genügt.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Charakterisierungssatz für eine Basis in einem - Vektorraum .
  2. Der Satz über Eigenvektoren zu paarweise verschiedenen Eigenwerten.
  3. Das Lemma von Bezout für Polynome.


Lösung

  1. Es sei ein Körper und ein -Vektorraum. Es sei eine Familie von Vektoren. Dann sind folgende Aussagen äquivalent.
    1. Die Familie ist eine Basis von .
    2. Die Familie ist ein minimales Erzeugendensystem, d.h. sobald man einen Vektor weglässt, liegt kein Erzeugendensystem mehr vor.
    3. Für jeden Vektor gibt es genau eine Darstellung
    4. Die Familie ist maximal linear unabhängig, d.h. sobald man irgendeinen Vektor dazunimmt, ist die Familie nicht mehr linear unabhängig.
  2. Es sei ein Körper, ein - Vektorraum und

    eine lineare Abbildung. Es seien Eigenvektoren zu (paarweise) verschiedenen Eigenwerten . Dann sind

    linear unabhängig.
  3. Es sei ein Körper und seien Polynome über . Es sei ein größter gemeinsamer Teiler der . Dann gibt es eine Darstellung
    mit .


Aufgabe (2 Punkte)

Erläutere das Prinzip Beweis durch Widerspruch.


Lösung

Man möchte eine Aussage beweisen. Man nimmt an, dass nicht gilt. Daraus leitet man durch logisch korrektes Schließen einen Widerspruch her. Somit kann nicht gelten und also muss gelten.


Aufgabe (3 (0.5+0.5+1+1) Punkte)

Professor Knopfloch fliegt von Tokio nach Frankfurt. Die Zeitdifferenz zwischen Frankfurt und Tokio beträgt 9 Stunden (wenn es in Frankfurt 12:00 ist, so ist es in Tokio bereits 21:00 am gleichen Tag). Das Flugzeug startet am Samstag um 11:30 Ortszeit in Tokio und landet am Samstag um 16:30 Ortszeit in Frankfurt und folgt dabei der eingezeichneten blauen Kurve. Die Erde ist in 24 Zeitzonen eingeteilt; in der Karte sind das (sehr schematisch) die Flächen, die durch die vom Nordpol ausgehenden Strahlen begrenzt werden. Wenn einer der Strahlen von West nach Ost (in der Karte bedeutet dies gegen den Uhrzeigersinn) überflogen wird, so springt die Ortszeit um eine Stunde vor. Wenn die Datumsgrenze (die rote Linie) von West nach Ost überflogen wird, so springt das Datum um einen Tag zurück (aber auch um eine Stunde vor, da die Datumsgrenze auch eine Zeitzonengrenze ist). Wir gehen davon aus, dass das Flugzeug für jede Überfliegung einer Zeitzone gleich lang braucht (das ist ziemlich unrealistisch) und dass Tokio und Frankfurt in der Mitte ihrer Zeitzonen liegen.

a) Wie lange ist das Flugzeug unterwegs?

b) Wie viele Minuten braucht das Flugzeug, um eine Zeitzone zu überfliegen?

c) Welche Ortszeit gilt unmittelbar nachdem das Flugzeug die Datumsgrenze durchflogen hat?

d) Wie viele Minuten war das Flugzeug gemäß Ortszeit am Freitag unterwegs?


Lösung


a) Das Flugzeug fliegt Stunden.

b) Es werden Zeitzonengrenzen und auch die Breite von Zeitzonen ( volle Zeitzonen und halbe Zeitzonen) überflogen. Das Flugzeug braucht somit Stunden, also Minuten, um eine Zeitzone zu überfliegen.

c) Um hat das Flugzeug zum ersten Mal eine Zeitzonengrenze überflogen (immer in neuer Ortszeit), um wird die nächste Zeitzonengrenze überflogen, um die nächste. Die folgende Zeitzonengrenze ist die Datumsgrenze, diese wird um am Freitag überfolgen.

d) Die beiden nächsten Zeitzonengrenzen werden um und um überflogen. Nach weiteren Minuten ist es in alter Ortszeit und am Samstag in neuer Ortszeit. Daher war das Flugzeug am Freitag

Minuten unterwegs.


Aufgabe (2 Punkte)

Löse das lineare Gleichungssystem


Lösung

Wir addieren zur ersten Gleichung das -fache der zweiten Gleichung und erhalten

bzw.

Daher ist


Aufgabe (4 Punkte)

Wir betrachten die lineare Abbildung , die durch die Matrix gegeben ist.

  1. Bestimme das Bild der durch die Gleichung

    gegebenen Geraden.

  2. Bestimme das Urbild der durch die Gleichung

    gegebenen Geraden.


Lösung

  1. Die Gerade kann man auch als

    auffassen. Das Bild des erzeugenden Vektors ist

    Alle Vielfache von werden auf Vielfache von abgebildet, somit ist die Bildgerade gekürzt gleich

  2. Wir schreiben die Koordinaten des ersten Raumes als und die Koordinaten den zweiten Raumes als . Aus der Beziehung

    ergibt sich

    Somit wird die Urbildgerade durch die Gleichung

    beschrieben.


Aufgabe (3 Punkte)

Es sei ein Körper und es seien und zwei - Vektorräume. Es sei

eine bijektive lineare Abbildung. Zeige, dass dann auch die Umkehrabbildung

linear ist.


Lösung

Seien . Wegen der Bijektivität gibt es eindeutige mit und . Somit ist

Entsprechend ist (mit )


Aufgabe (5 Punkte)

Es sei ein Körper und es seien und Vektorräume über der Dimension bzw. . Es sei

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix beschrieben werde. Zeige, dass genau dann injektiv ist, wenn die Spalten der Matrix linear unabhängig in sind.


Lösung

Es seien und Basen von bzw. und es seien die Spaltenvektoren von . Die Abbildung hat die Eigenschaft

wobei der -te Eintrag des -ten Spaltenvektors ist. Daher ist

Dies ist genau dann , wenn für alle ist, und dies ist äquivalent zu

Dafür gibt es ein nichttriviales (Lösungs-)Tupel genau dann, wenn die Spalten linear abhängig sind und genau dann, wenn der Kern von nicht trivial ist. Dies ist gemäß Lemma 11.4 (Lineare Algebra (Osnabrück 2024-2025)) äquivalent dazu, dass nicht injektiv ist.


Aufgabe (3 Punkte)

Es sei eine invertierbare obere Dreiecksmatrix. Zeige, dass die inverse Matrix ebenfalls eine obere Dreiecksmatrix ist.


Lösung

Es sei mit

für und sei

mit . Es ist , da sonst die letzte Zeile von die Nullzeile wäre, was im invertierbaren Fall nicht sein kann. Wir betrachten die Produkte der -ten Zeile von mit den Spalten von . Dies führt zu den Bedingungen für und daraus folgt für . Das gleiche Argument, angewendet auf die Untermatrix ergibt Zeile von Zeile das Resultat.


Aufgabe (1 Punkt)

Bestimme die inverse Matrix von


Lösung

Die inverse Matrix ist


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (2 Punkte)

Löse das lineare Gleichungssystem

mit Hilfe der Cramerschen Regel.


Lösung

Es ist

und


Aufgabe (8 Punkte)

Beweise die Leibniz-Formel für die Determinante.


Lösung

Wir führen Induktion über , wobei der Induktionsanfang klar ist. Es sei also . Die Menge der Permutationen kann man aufspalten, indem man nach sortiert und die bijektive Abbildung

als eine Permutation auf auffasst, indem man beide Mengen ordnungstreu mit identifiziert. Dies ergibt eine Bijektion , wobei hier die Menge der Permutationen auf bezeichnet, die auf abbilden. Zwischen den Signa besteht dabei die Beziehung

da man Transpositionen braucht, um die -te Stelle und die erste Stelle zu vertauschen. Es besteht also insgesamt eine natürliche Bijektion

Somit gilt

wobei die Streichungsmatrix zur ersten Zeile und -ten Spalte ist (und sich die Indizierung auf diese Matrix bezieht). Für die vorletzte Gleichung geht die Induktionsvoraussetzung ein und die letzte Gleichung beruht auf der Entwicklung nach der ersten Zeile.


Aufgabe (4 Punkte)

Es sei ein Körper und sei der Polynomring über . Es sei ein Polynom und . Zeige, dass genau dann eine Nullstelle von ist, wenn ein Vielfaches des linearen Polynoms ist.


Lösung

Wenn ein Vielfaches von ist, so kann man

mit einem weiteren Polynom schreiben. Einsetzen ergibt

Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung

wobei oder aber den Grad besitzt, also so oder so eine Konstante ist. Einsetzen ergibt

Wenn also ist, so muss der Rest sein, und das bedeutet, dass ist.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 (2+0.5+0.5) Punkte)

Es sei ein Körper, ein - Vektorraum

eine lineare Abbildung und . Zeige folgende Aussagen.

  1. Der Eigenraum

    ist ein Untervektorraum von .

  2. ist genau dann ein Eigenwert zu , wenn der Eigenraum nicht der Nullraum ist.
  3. Ein Vektor , ist genau dann ein Eigenvektor zu , wenn ist.


Lösung

(1). Es seien und sei . Dann ist

(2) und (3) folgen direkt aus den Definitionen.


Aufgabe (2 Punkte)

Bestimme, ob die Matrix

nilpotent ist.


Lösung

Wegen

ist ein Eigenwert der Matrix, sie kann also nicht nilpotent sein.


Aufgabe (4 Punkte)

Finde eine affine Basis für die Lösungsmenge der inhomogenen Gleichung


Lösung

Eine spezielle Lösung der Gleichung ist durch

gegeben. Für die zugehörige homogene Gleichung sind

Lösungen, die offenbar linear unabhängig sind. Da der Rang des Gleichungssystems ist, handelt es sich um eine Basis des Lösungsraumes der homogenen Gleichung. Daher bildet

eine affine Basis der Lösungsmenge der inhomogenen Gleichung.