Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 9/latex

\setcounter{section}{9}






\zwischenueberschrift{Lineare Abbildungen}




\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {Vektorräume}{}{} über $K$. Eine \definitionsverweis {Abbildung}{}{} \maabbdisp {\varphi} {V} {W } {} heißt \definitionswort {lineare Abbildung}{,} wenn die beiden folgenden Eigenschaften erfüllt sind. \aufzaehlungzwei {
\mavergleichskette
{\vergleichskette
{ \varphi(u+v) }
{ = }{ \varphi(u) + \varphi(v) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ u,v }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} } {
\mavergleichskette
{\vergleichskette
{ \varphi( s v) }
{ = }{ s \varphi(v) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle \mathkor {} {s \in K} {und} {v \in V} {.} }

}

Die erste Eigenschaft nennt man dabei die \stichwort {Additivität} {} und die zweite Eigenschaft die \stichwort {Verträglichkeit mit Skalierung} {.} Wenn man den Grundkörper betonen möchte spricht man von
\mathl{K}{-}Linearität. Die Identität \maabb {\operatorname{Id}_{ V }} {V} {V } {,} die Nullabbildung \maabb {} {V} {0 } {} und die Inklusionen
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} von Untervektorräumen sind die einfachsten Beispiele für lineare Abbildungen.




\inputbeispiel{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei $K^n$ der $n$-\definitionsverweis {dimensionale}{}{} \definitionsverweis {Standardraum}{}{.} Dann ist die $i$-te \stichwort {Projektion} {,} also die \definitionsverweis {Abbildung}{}{} \maabbeledisp {} {K^n} {K } { \left( x_1 , \, \ldots , \, x_{i-1} , \, x_i , \, x_{i+1} , \, \ldots , \, x_n \right) } {x_i } {,} eine $K$-\definitionsverweis {lineare Abbildung}{}{.} Dies folgt unmittelbar aus der komponentenweisen Addition und Skalarmultiplikation auf dem Standardraum. Die $i$-te Projektion heißt auch die $i$-te \stichwort {Koordinatenfunktion} {.}


}


\inputfaktbeweis
{Lineare Abbildung/Verknüpfung/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und seien
\mathl{U,V,W}{} \definitionsverweis {Vektorräume}{}{} über $K$. Es seien
\mathdisp {\varphi : U \longrightarrow V \text{ und } \psi : V \longrightarrow W} { }
\definitionsverweis {lineare Abbildungen}{}{.}}
\faktfolgerung {Dann ist auch die \definitionsverweis {Verknüpfung}{}{} \maabbdisp {\psi \circ \varphi} { U} {W } {} eine lineare Abbildung.}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 9.7. }


\inputfaktbeweis
{Lineare Abbildung/Bijektiv/Umkehrabbildung linear/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} zwei $K$-\definitionsverweis {Vektorräume}{}{.} Es sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {bijektive}{}{} \definitionsverweis {lineare}{}{} \definitionsverweis {Abbildung}{}{.}}
\faktfolgerung {Dann ist auch die \definitionsverweis {Umkehrabbildung}{}{} \maabbdisp {\varphi^{-1}} {W} {V } {} \definitionsverweis {linear}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 10.3. }







\zwischenueberschrift{Festlegung auf einer Basis}

Hinter der folgenden Aussage (dem \stichwort {Festlegungssatz} {}) steckt das wichtige Prinzip, dass in der linearen Algebra \zusatzklammer {von endlichdimensionalen Vektorräumen} {} {} die Objekte durch endlich viele Daten bestimmt sind.




\inputfaktbeweis
{Lineare Abbildung/Festlegung auf Basis/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {Vektorräume}{}{} über $K$. Es sei
\mathbed {v_i} {}
{i \in I} {}
{} {} {} {,} eine endliche \definitionsverweis {Basis}{}{} von $V$ und es seien
\mathbed {w_i} {}
{i \in I} {}
{} {} {} {,} Elemente in $W$.}
\faktfolgerung {Dann gibt es genau eine \definitionsverweis {lineare Abbildung}{}{} \maabbdisp {f} {V} {W } {} mit
\mathdisp {f(v_i)= w_i \text { für alle } i \in I} { . }
}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{Da
\mavergleichskette
{\vergleichskette
{f(v_i) }
{ = }{w_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein soll und eine \definitionsverweis {lineare Abbildung}{}{} für jede \definitionsverweis {Linearkombination}{}{} die Eigenschaft
\mavergleichskettedisp
{\vergleichskette
{ f { \left( \sum_{i \in I} s_i v_i \right) } }
{ =} { \sum_{i \in I} s_i f { \left( v_i \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} erfüllt, und jeder Vektor
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sich als eine solche Linearkombination schreiben lässt, kann es maximal nur eine solche lineare Abbildung geben.}
{} \teilbeweis {}{}{}
{Wir definieren nun umgekehrt eine \definitionsverweis {Abbildung}{}{} \maabbdisp {f} {V} {W } {,} indem wir jeden Vektor
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit der gegebenen Basis als
\mavergleichskettedisp
{\vergleichskette
{v }
{ =} {\sum_{i \in I} s_i v_i }
{ } { }
{ } { }
{ } { }
} {}{}{} schreiben und
\mavergleichskettedisp
{\vergleichskette
{ f(v) }
{ \defeq} { \sum_{i \in I} s_i w_i }
{ } { }
{ } { }
{ } { }
} {}{}{} ansetzen. Da die Darstellung von $v$ als eine solche \definitionsverweis {Linearkombination}{}{} eindeutig ist, ist diese Abbildung wohldefiniert.}
{} \teilbeweis {Zur Linearität.\leerzeichen{}}{}{}
{Für zwei Vektoren \mathkor {} {u= \sum_{i \in I} s_iv_i} {und} {v= \sum_{i \in I} t_iv_i} {} gilt
\mavergleichskettealign
{\vergleichskettealign
{ f { \left( u+v \right) } }
{ =} { f { \left( { \left( \sum_{i \in I} s_iv_i \right) } + { \left( \sum_{i \in I} t_iv_i \right) } \right) } }
{ =} { f { \left( \sum_{i \in I} { \left( s_i + t_i \right) } v_i \right) } }
{ =} { \sum_{i \in I} (s_i + t_i) f { \left( v_i \right) } }
{ =} { \sum_{i \in I} s_i f { \left( v_i \right) } + \sum_{i \in I} t_i f(v_i) }
} {
\vergleichskettefortsetzungalign
{ =} { f { \left( \sum_{i \in I} s_iv_i \right) } + f { \left( \sum_{i \in I} t_iv_i \right) } }
{ =} { f(u) +f(v) }
{ } {}
{ } {}
} {}{.}}
{} \teilbeweis {}{}{}
{Die Verträglichkeit mit der skalaren Multiplikation ergibt sich ähnlich, siehe Aufgabe 9.6.}
{}

}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Variables proporcionals.png} }
\end{center}
\bildtext {Der Funktionsgraph einer linearen Abbildung von $\R$ nach $\R$, die Abbildung ist allein durch den Proportionalitätsfaktor $k$ festgelegt.} }

\bildlizenz { Variables proporcionals.png } {} {Coronellian} {Commons} {CC-by-sa 3.0} {}




\inputbeispiel{}
{

Die einfachsten \definitionsverweis {linearen Abbildungen}{}{} sind \zusatzklammer {neben der Nullabbildung} {} {} diejenigen von $K$ nach $K$. Eine solche lineare Abbildung \maabbeledisp {\varphi} {K} {K } {x} {\varphi(x) } {,} ist aufgrund von Satz 9.5 bzw. direkt aufgrund der Definition durch
\mathl{\varphi(1)}{} bzw. durch den Wert
\mathl{\varphi(t)}{} für ein einziges
\mathbed {t \in K} {}
{t \neq 0} {}
{} {} {} {,} festgelegt. Es ist also
\mavergleichskette
{\vergleichskette
{ \varphi(x) }
{ = }{ ax }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit einem eindeutig bestimmten
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Insbesondere im physikalischen Kontext, wenn
\mavergleichskette
{\vergleichskette
{K }
{ = }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist und wenn zwischen zwei messbaren Größen ein linearer Zusammenhang besteht, spricht man von \stichwort {Proportionalität} {,} und $a$ heißt der \stichwort {Proportionalitätsfaktor} {.} In der Schule tritt die lineare Beziehung zwischen zwei skalaren Größen als \anfuehrung{Dreisatz}{} auf.


}






\zwischenueberschrift{Lineare Abbildungen und Matrizen}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Some_linear_maps_kpv_without_eigenspaces.svg} }
\end{center}
\bildtext {Die Wirkungsweise von verschiedenen linearen Abbildungen des $\R^2$ in sich, dargestellt an einer Gehirnzelle.} }

\bildlizenz { Some linear maps kpv without eigenspaces.svg } {} {Dividuum} {Commons} {CC-by-sa 3.0} {}

Eine lineare Abbildung \maabbdisp {\varphi} {K^n} {K^m } {} ist durch die Bilder
\mathbed {\varphi(e_j)} {}
{j = 1 , \ldots , n} {}
{} {} {} {,} der Standardvektoren eindeutig festgelegt, und jedes
\mathl{\varphi(e_j)}{} ist eine Linearkombination
\mavergleichskettedisp
{\vergleichskette
{ \varphi(e_j) }
{ =} { \sum_{i = 1}^m a_{ij} e_i }
{ } { }
{ } { }
{ } { }
} {}{}{} und damit durch die Elemente
\mathl{a_{ij}}{} eindeutig festgelegt. Insgesamt ist also eine solche lineare Abbildung durch $mn$ Elemente
\mathbed {a_{ij}} {}
{1 \leq i \leq m} {}
{1 \leq j \leq n} {} {} {,} festgelegt. Eine solche Datenmenge kann man wieder als Matrix schreiben. Nach dem Festlegungssatz gilt dies, sobald sowohl im Definitionsraum als auch im Zielraum der linearen Abbildung eine Basis fixiert ist.




\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei $V$ ein $n$-\definitionsverweis {dimensionaler}{}{} \definitionsverweis {Vektorraum}{}{} mit einer \definitionsverweis {Basis}{}{}
\mavergleichskette
{\vergleichskette
{ \mathfrak{ v } }
{ = }{ v_1 , \ldots , v_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und sei $W$ ein $m$-dimensionaler Vektorraum mit einer Basis
\mavergleichskette
{\vergleichskette
{ \mathfrak{ w } }
{ = }{ w_1 , \ldots , w_m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

Zu einer \definitionsverweis {linearen Abbildung}{}{} \maabbdisp {\varphi} {V} {W } {} heißt die $m \times n$-\definitionsverweis {Matrix}{}{}
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} {M^{ \mathfrak{ v } }_{ \mathfrak{ w } } ( \varphi) }
{ =} { (a_{ij})_{ij} }
{ } { }
{ } { }
} {}{}{,} wobei
\mathl{a_{ij}}{} die $i$-te \definitionsverweis {Koordinate}{}{} von
\mathl{\varphi(v_j )}{} bezüglich der Basis $\mathfrak{ w }$ ist, die \definitionswort {beschreibende Matrix zu}{} $\varphi$ bezüglich der Basen.

Zu einer Matrix
\mavergleichskette
{\vergleichskette
{M }
{ = }{ (a_{ij})_{ij} }
{ \in }{ \operatorname{Mat}_{ m \times n } (K) }
{ }{ }
{ }{ }
} {}{}{} heißt die durch
\mathdisp {v_j \longmapsto \sum_{ i = 1 }^{ m } a_{ij} w_i} { }
gemäß Satz 9.5 definierte lineare Abbildung
\mathl{\varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } } (M)}{} die \definitionswort {durch}{} $M$ \definitionswort {festgelegte lineare Abbildung}{.}

}

Die Identität auf einem Vektorraum der Dimension $n$ wird bezüglich einer beliebigen Basis durch die Einheitsmatrix beschrieben.





\inputfaktbeweisnichtvorgefuehrt
{Lineare Abbildung/Matrix zu Basen/Korrespondenz/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei $V$ ein $n$-\definitionsverweis {dimensionaler}{}{} \definitionsverweis {Vektorraum}{}{} mit einer \definitionsverweis {Basis}{}{}
\mavergleichskette
{\vergleichskette
{ \mathfrak{ v } }
{ = }{ v_1 , \ldots , v_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und sei $W$ ein $m$-dimensionaler Vektorraum mit einer Basis
\mavergleichskette
{\vergleichskette
{ \mathfrak{ w } }
{ = }{ w_1 , \ldots , w_m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann sind die in Definition 9.7 festgelegten Abbildungen
\mathdisp {\varphi \longmapsto M^{ \mathfrak{ v } }_{ \mathfrak{ w } } ( \varphi) \text{ und } M \longmapsto \varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } } (M)} { }
\definitionsverweis {invers}{}{} zueinander.}
\faktzusatz {}
\faktzusatz {}

}
{

Wir zeigen, dass beide Hintereinanderschaltungen die Identität sind. \teilbeweis {}{}{}
{Wir starten mit einer Matrix
\mavergleichskette
{\vergleichskette
{ M }
{ = }{ { \left( a_{ij} \right) }_{ij} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und betrachten die Matrix
\mathdisp {M^{ \mathfrak{ v } }_{ \mathfrak{ w } }( \varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } }(M) )} { . }
Zwei Matrizen sind gleich, wenn für jedes Indexpaar
\mathl{(i,j)}{} die Einträge übereinstimmen. Es ist
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{(M^{ \mathfrak{ v } }_{ \mathfrak{ w } }( \varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } }(M) ))_{ij} }
{ =} { i-\text{te Koordinate von } ( \varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } }(M)) (v_j) }
{ =} { i-\text{te Koordinate von } \sum_{ i = 1 }^{ m } a_{ij} w_i }
{ =} {a_{ij} }
{ } { }
} {} {}{.}}
{} \teilbeweis {}{}{}
{Es sei nun $\varphi$ eine lineare Abbildung, und betrachten wir
\mathdisp {\varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } }( M^{ \mathfrak{ v } }_{ \mathfrak{ w } }(\varphi) )} { . }
Zwei lineare Abbildungen stimmen nach Satz 9.5 überein, wenn man zeigen kann, dass sie auf der Basis
\mathl{v_1 , \ldots , v_n}{} übereinstimmen. Es ist
\mavergleichskettedisp
{\vergleichskette
{ (\varphi^{ \mathfrak{ v } }_{ \mathfrak{ w } }( M^{ \mathfrak{ v } }_{ \mathfrak{ w } }(\varphi) ))(v_j) }
{ =} { \sum_{ i = 1 }^{ m } (M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi))_{ij} \, w_i }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dabei ist nach Definition der Koeffizient
\mathl{(M^{ \mathfrak{ v } }_{ \mathfrak{ w } } (\varphi))_{ij}}{} die $i$-te Koordinate von
\mathl{\varphi(v_j)}{} bezüglich der Basis
\mathl{w_1 , \ldots , w_m}{.} Damit ist diese Summe gleich
\mathl{\varphi(v_j)}{.}}
{}

}





\inputbeispiel{}
{

Eine lineare Abbildung \maabbdisp {\varphi} {K^n} {K^m } {} wird zumeist durch die Matrix $M$ bezüglich der \definitionsverweis {Standardbasen}{}{} links und rechts beschrieben. Das Ergebnis der Matrixmultiplikation
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} y_{1 } \\ \vdots\\ y_{ m } \end{pmatrix} }
{ =} {M \begin{pmatrix} x_{1 } \\ \vdots\\ x_{ n } \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} ist dann direkt als Punkt in $K^m$ interpretierbar. Die $j$-te Spalte von $M$ ist das Bild des $j$-ten Standardvektors $e_j$.


}






\zwischenueberschrift{Untervektorräume unter linearen Abbildungen}


\inputfaktbeweis
{Lineare Abbildung/Bild und Urbild/Untervektorräume/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.}}
\faktuebergang {Dann gelten folgende Aussagen.}
\faktfolgerung {\aufzaehlungvier{Für einen \definitionsverweis {Untervektorraum}{}{}
\mavergleichskette
{\vergleichskette
{ S }
{ \subseteq }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist auch das \definitionsverweis {Bild}{}{}
\mathl{\varphi(S) ={ \left\{ \varphi(v) \mid v \in S \right\} }}{} ein Untervektorraum von $W$. }{Insbesondere ist das Bild
\mavergleichskette
{\vergleichskette
{ \operatorname{bild} \varphi }
{ = }{ \varphi(V) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der Abbildung ein Untervektorraum von $W$. }{Für einen Untervektorraum
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ W }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist das \definitionsverweis {Urbild}{}{}
\mathl{\varphi^{-1}(T) ={ \left\{ v \in V \mid \varphi(v) \in W \right\} }}{} ein Untervektorraum von $V$. }{Insbesondere ist
\mathl{\varphi^{-1}(0)}{} ein Untervektorraum von $V$. }}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 9.10. }





\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.} Dann nennt man
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{kern} \varphi }
{ \defeq} { \varphi^{-1}(0) }
{ =} { { \left\{ v \in V \mid \varphi(v) = 0 \right\} } }
{ } { }
{ } { }
} {}{}{} den \definitionswort {Kern}{} von $\varphi$.

}

Der Kern ist also nach der obigen Aussage ein Untervektorraum von $V$.

Wichtig ist das folgende \stichwort {Injektivitätskriterium} {.}




\inputfaktbeweis
{Lineare Abbildung/Kern/Injektivität/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{.}}
\faktfolgerung {Dann ist $\varphi$ genau dann \definitionsverweis {injektiv}{}{,} wenn
\mavergleichskette
{\vergleichskette
{ \operatorname{kern} \varphi }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{Wenn die Abbildung injektiv ist, so kann es neben
\mavergleichskette
{\vergleichskette
{0 }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} keinen weiteren Vektor
\mavergleichskette
{\vergleichskette
{v }
{ \in }{V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \varphi(v) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} geben. Also ist
\mavergleichskette
{\vergleichskette
{ \varphi^{-1}(0) }
{ = }{ \{ 0 \} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{} \teilbeweis {}{}{}
{Es sei umgekehrt
\mavergleichskette
{\vergleichskette
{ \operatorname{kern} \varphi }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und seien
\mavergleichskette
{\vergleichskette
{ v_1,v_2 }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben mit
\mavergleichskette
{\vergleichskette
{ \varphi(v_1) }
{ = }{ \varphi(v_2) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann ist wegen der Linearität
\mavergleichskettedisp
{\vergleichskette
{\varphi(v_1 - v_2) }
{ =} {\varphi(v_1) - \varphi(v_2) }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Daher ist
\mavergleichskette
{\vergleichskette
{ v_1-v_2 }
{ \in }{ \operatorname{kern} \varphi }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und damit
\mavergleichskette
{\vergleichskette
{v_1 }
{ = }{v_2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{}

}







\zwischenueberschrift{Die Dimensionsformel}

Die folgende Aussage heißt \stichwort {Dimensionsformel} {.}




\inputfaktbeweis
{Lineare Abbildung/Dimensionsformel/Fakt}
{Satz}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{} und}
\faktvoraussetzung {$V$ sei endlichdimensional.}
\faktfolgerung {Dann gilt
\mavergleichskettedisp
{\vergleichskette
{ \dim_{ K } { \left( V \right) } }
{ =} { \dim_{ K } { \left( \operatorname{kern} \varphi \right) } + \dim_{ K } { \left( \operatorname{bild} \varphi \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Es sei
\mavergleichskette
{\vergleichskette
{ n }
{ = }{ \dim_{ K } { \left( V \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Es sei
\mavergleichskette
{\vergleichskette
{U }
{ = }{ \operatorname{kern} \varphi }
{ \subseteq }{ V }
{ }{ }
{ }{ }
} {}{}{} der \definitionsverweis {Kern}{}{} der Abbildung und
\mavergleichskette
{\vergleichskette
{ k }
{ = }{ \dim_{ K } { \left( U \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} seine \definitionsverweis {Dimension}{}{} \zusatzklammer {$k \leq n$} {} {.} Es sei
\mathdisp {u_1 , \ldots , u_k} { }
eine \definitionsverweis {Basis}{}{} von $U$. Aufgrund des Basisergänzungssatzes gibt es Vektoren
\mathdisp {v_1 , \ldots , v_{n-k }} { }
derart, dass
\mathdisp {u_1 , \ldots , u_k, \, v_1 , \ldots , v_{n-k }} { }
eine Basis von $V$ ist. \teilbeweis {Wir behaupten, dass
\mathdisp {w_j = \varphi(v_j), \, j=1 , \ldots , n-k} { , }
eine Basis des Bildes ist.\leerzeichen{}}{}{}
{Es sei
\mavergleichskette
{\vergleichskette
{ w }
{ \in }{ W }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Element des Bildes
\mathl{\varphi(V)}{.} Dann gibt es ein
\mavergleichskette
{\vergleichskette
{ v }
{ \in }{ V }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \varphi(v) }
{ = }{ w }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dieses $v$ lässt sich mit der Basis als
\mavergleichskettedisp
{\vergleichskette
{ v }
{ =} { \sum_{i = 1}^{ k } s_i u_i + \sum_{ j = 1 }^{ n-k } t_j v_j }
{ } { }
{ } { }
{ } { }
} {}{}{} schreiben. Dann ist
\mavergleichskettealign
{\vergleichskettealign
{w }
{ =} { \varphi(v) }
{ =} { \varphi { \left( \sum_{i=1}^{ k } s_i u_i + \sum_{j = 1}^{n-k } t_j v_j \right) } }
{ =} { \sum_{i = 1}^{ k } s_i \varphi(u_i) + \sum_{j = 1}^{n- k } t_j \varphi (v_j) }
{ =} { \sum_{j = 1}^{n-k } t_j w_j }
} {} {}{,} sodass sich $w$ als \definitionsverweis {Linearkombination}{}{} der $w_j$ schreiben lässt. \teilbeweis {}{}{}
{Zum Beweis der \definitionsverweis {linearen Unabhängigkeit}{}{} der
\mathbed {w_j} {}
{j=1 , \ldots , n-k} {}
{} {} {} {,} sei eine Darstellung der Null gegeben,
\mavergleichskettedisp
{\vergleichskette
{ 0 }
{ =} { \sum_{j = 1}^{n-k } t_j w_j }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \varphi { \left( \sum_{j = 1}^{n-k } t_j v_j \right) } }
{ =} { \sum_{j = 1}^{n-k } t_j \varphi { \left( v_j \right) } }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Also gehört
\mathl{\sum_{j=1}^{n-k } t_j v_j}{} zum Kern der Abbildung und daher kann man
\mavergleichskettedisp
{\vergleichskette
{ \sum_{ j = 1 }^{n-k } t_j v_j }
{ =} { \sum_{ i = 1 }^{ k } s_i u_i }
{ } { }
{ } { }
{ } { }
} {}{}{} schreiben. Da insgesamt eine Basis von $V$ vorliegt, folgt, dass alle Koeffizienten $0$ sein müssen, also sind insbesondere
\mavergleichskette
{\vergleichskette
{ t_j }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{}}
{}

}





\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,} \mathkor {} {V} {und} {W} {} seien $K$-\definitionsverweis {Vektorräume}{}{} und \maabbdisp {\varphi} {V} {W } {} sei eine $K$-\definitionsverweis {lineare Abbildung}{}{} und $V$ sei endlichdimensional. Dann nennt man
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{rang} \, \varphi }
{ \defeq} { \dim_{ K } { \left( \operatorname{bild} \varphi \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} den \definitionswort {Rang}{} von $\varphi$.

}

Die Dimensionsformel kann man auch als
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{dim}_{ } { \left( V \right) } }
{ =} { \operatorname{dim}_{ } { \left( \operatorname{kern} \varphi \right) } + \operatorname{rang} \, \varphi }
{ } { }
{ } { }
{ } { }
} {}{}{} ausdrücken.




\inputbeispiel{}
{

Wir betrachten die durch die Matrix
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} 0 & 1 & 1 \\ 0 & 2 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 6 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebene \definitionsverweis {lineare Abbildung}{}{} \maabbeledisp {\varphi} {\R^3} {\R^4 } {\begin{pmatrix} x \\y\\ z \end{pmatrix}} {M\begin{pmatrix} x \\y\\ z \end{pmatrix} = \begin{pmatrix} y+z \\2y+2z\\ x+3y+4z\\2x+4y+6z \end{pmatrix} } {.} Zur Bestimmung des \definitionsverweis {Kerns}{}{} müssen wir das \definitionsverweis {homogene lineare Gleichungssystem}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} y+z \\2y+2z\\ x+3y+4z\\2x+4y+6z \end{pmatrix} }
{ =} { \begin{pmatrix} 0 \\0\\ 0\\0 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} lösen. Der Lösungsraum ist
\mavergleichskettedisp
{\vergleichskette
{L }
{ =} { { \left\{ s \begin{pmatrix} 1 \\1\\ -1 \end{pmatrix} \mid s \in \R \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} und dies ist der Kern von $\varphi$. Der Kern ist also eindimensional und daher ist die Dimension des Bildes nach der Dimensionsformel gleich $2$.


}





\inputfaktbeweis
{Vektorraum/Endlichdimensional/Injektiv surjektiv bijektiv/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {Vektorräume}{}{} über $K$ der gleichen \definitionsverweis {Dimension}{}{} $n$. Es sei \maabbdisp {\varphi} {V} {W } {} eine \definitionsverweis {lineare Abbildung}{}{.}}
\faktfolgerung {Dann ist $\varphi$ genau dann \definitionsverweis {injektiv}{}{,} wenn $\varphi$ \definitionsverweis {surjektiv}{}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Dies folgt aus der Dimensionsformel und Lemma 9.12.

}



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF) (PDF englisch)