Kurs:Topologische Invertierbarkeitskriterien/Multiplikative topologische Nullteiler
Einleitung
BearbeitenMultiplikative topologische Nullteiler charakterisieren die -regulären (bzw. die -regulären Elemente) in kommuntativen multiplikativen topologischen Algebren mit einem submultiplikativen Halbnormensystem (bzw. submultiplikativen -Halbnormensystem).
MPC- bzw. MLC-Regularität
BearbeitenDie Negation der Eigenschaft, ein multiplikativer topologischer Nullteiler zu sein, führt dazu, dass ein mit ein -reguläres Element in kommuntativen unitalen topologische Algebren ist. Dies gilt analog für die Algebrenklasse . Daher werden die multiplikativen topologischen Nullteiler in dieser Lerneinheit genauer untersucht.
Skalar-unbeschränkte Teilmengen von Nullumgebungen
BearbeitenIn einer Nullumgebung kann man die skalar-unbeschränkten Teilmenge einer Nullumgebung identifizieren. Das sind die Elemente einer Nullumgebung , bei denen beliebige skalare Vielfache der Vektoren ebenfalls wieder in der Nullumgebung liegen (i.e. für alle ).
Definition: Skalar-unbeschränkte Teilmengen von Nullumgebungen
BearbeitenSei eine topologische Algebra mit als System von offenen Mengen und eine Nullumgebung. Die skalar-unbeschränkte Teilmenge einer Nullumgebung wird dann wie folgt definiert:
Bemerkung: Nullvektor
BearbeitenFür jede Nullumgebung gilt , denn der Nullvektor liegt in der skalar-unbeschränkten Teilmenge von beliebigen Nullumgebungen , denn für alle erhält man die Bedingung:
Aufgabe 1 - Skalar unbeschränkte Teilmengen von Nullumgebungen
BearbeitenSei die Vektorraum der stetige reellwertige Funktionen von nach mit dem Halbnormensystem und den Halbnormen (siehe auch Normen, Metriken, Topologie):
Geben Sie zu dem lokalkonvexen topologischen Vektorraum zu der offenen Menge
die Elemente aus an.
Aufgabe 2 - Skalar unbeschränkte Teilmengen von Nullumgebungen
BearbeitenSei die Vektorraum der stetige reellwertige Funktionen von nach mit dem Halbnormensystem und den Halbnormen (siehe auch Normen, Metriken, Topologie):
Geben Sie in zu der offenen Menge wieder alle Elemente aus an. Welche Gemeinsamkeiten und Unterschiede bestehen zwischen Aufgabe 1 und 2 bzgl. der skalaren Unbeschränktheit?
Beispiele für skalar-unbeschränkte Teilmengen von Nullumgebungen
BearbeitenWir betrachten die reelle -Algebra von Potenzreihen mit reellen Koeffizienten und der Partialsummentopologie. Dabei sind mit beliebige Potenzreihen gemeint, die nicht notwendig konvergent bzw. absolut konvergent mit Koeffizienten in sind.
Aufgabe: Skalar-unbeschränkte Teilmenge einer Nullumgebung
BearbeitenSei beliebig gewählt. Zeigen Sie, dass alle Potenzreihen mit für alle zur skalar-unbeschränkten Teilmenge der Nullumgebungen gehören mit:
Cauchy-Produkt auf der Potenzreihenalgebra
Bearbeitenwird analog zur Polynomalgebra die Cauchymultiplikation von zwei Potenzreihen als multiplikative Verknüpfung wie folgt definiert.
Aufgabe 3 - Cauchy-Produkt - submultiplikative Halbnormen
BearbeitenZeigen Sie, dass die Partialsummentopologie submultiplikative Halbnormen auf der Potenzreihenalgebra erzeugt.
Definition: Multiplikative topologische Nullteiler
BearbeitenSei eine topologische Algebra. Da eine topologische Algebra nicht notwendig kommutativ ist, unterscheidet man rechtseitige und linkseitige multiplikative topologische Nullteiler. Dabei gilt für eine multiplikative Nullumgebung die Bedingung:
Für das entsprechende Gaugefunktionale gilt dann für alle .
Definition: Rechtsseitiger multiplikativer topologische Nullteiler
BearbeitenMan nennt einen rechtsseitgen multiplikativer topologischen Nullteiler in (Bezeichnung: ), falls es eine multiplikative kreisförmige Nullumgebung gibt, so dass gilt für alle :
Definition: Linksseitiger multiplikativer topologischer Nullteiler
Bearbeitenheißt linksseitger multiplikativer topologischer Nullteiler in (Bezeichnung: ), falls ese eine multiplikative kreisförmige Nullumgebung gibt, so dass für alle gilt:
Definition: multiplikativer topologischer Nullteiler
Bearbeitenist ein multiplikativer topologischer Nullteiler (Bezeichnung: ), falls ein rechtseitiger oder ein linkseitiger multiplikativer topologischer Nullteiler ist.
Bemerkung: Multiplikative topologische Nullteiler
BearbeitenDie Definition eines multiplikativen topologischen Nullteilers basiert auf dem Charakterisierungssatz von Zelazko für -reguläre Elemente (1971)[1], bei dem die Menge der multiplikativen topologischen Nullteiler genau die -singulären Elemente der Algebra darstellt.
Lemma: MTNT - Gaugefunktionale
BearbeitenSei ein submultiplikatives -Gaugefunktionalsystem , dann gilt mit als Menge der Gaugefunktionalindizes, die submultiplikativ, sind folgende Äquivalenz:
In kommutativen Algebren gilt .
Beweis - MTNT - Gaugefunktionale
BearbeitenBeweis siehe MTNT-Kriterium für Gaugefunktionale.
Lemma: Negation MTNT - Gaugefunktionale
BearbeitenSei ein unital positives submultiplikatives -Halbnormensystem einer -Algebra, dann gilt:
Bemerkung: MPC-Regularität
BearbeitenBei der Charakterisierung der -Regularität sind die -singulären Elemente genau die multiplikativen topologischen Nullteiler und die -regulären Elemente die Elemente, die die folgenden Ungleichung für alle mit geeignet gewählten erfüllen für alle :
Lemma: Zusammenhang MTNT - TNT
BearbeitenSei eine topologische Algebra mit einem unital-positiven Gaugefunktionalsystem , dann gilt .
Beweis - Zusammenhang MTNT - TNT
BearbeitenSei , dann gilt genau dann, wenn es ein gibt, so dass für alle gilt:
Wenn submultiplikativ ist, dann gilt die Aussage insbesondere für und man erhält die Behauptung.
Spezialfall für MTNT-Elemente
BearbeitenFür multiplikative topologische Nullteiler muss das Infimum aber nur 0 sein für das spezielle . Für rechtsseitige (linksseitige) topologische Nullteiler muss das Infimum aber für alle gelten. Also folgt insbesondere:
Damit gilt auch .
Linksseitige und allgemeine TNT und MTNT
BearbeitenDer Beweis für den Zusammenhang zwischen multiplikativen topologischen Nullteilern und topologischen Nullteiler über Gaugefunktionale verläuft für inksseitige und allgemeine TNT und MTNT analog.
Bemerkung: MTNT - über Nullumgebungen
BearbeitenSei und ein rechtseitiger topologischer Nullteiler, für den gilt nach Definition, dass es eine Nullumgebung gibt, so dass gilt:
Damit gilt u.a., dass es für jede Nullumgebgung gilt:
Skalar unbeschränkte Teilmengen
BearbeitenDa der Nullvektor in jeder skalar unbeschränkten Teilmengen von beliebigen Nullumgebungen enthalten ist, gilt für alle die Bedingung:
Lemma: Zusammenhang MTNT und TNT
BearbeitenSei eine topologische Algebra mit einer Nullumgebungsbasis aus multiplikativen Nullumgebungen. Dann gelten folgende Teilmengenbeziehungen:
Aufgabe 4 - Teilmengenbeziehung zu MTNT
BearbeitenDie folgenden Beweisaufgaben beziehen sich auf den Zusammenhang von multiplikativen topologischen Nullteilern und topologischen Nullteilern. Zeigen Sie die folgenden Aussagen über die Verwendung eines unital-positiven Gaugefunktionalsystems auf z.B. für .
Beweis Lemma Zusammenhang MTNT und TNT
BearbeitenBeweisen Sie, dass in einer topologische Algebra mit einer Nullumgebungsbasis aus multiplikativen Nullumgebungen die folgende Teilmengenbeziehungen gelten:
Banachalgebren - Lokalbeschränkte Algebren
BearbeitenZeigen Sie, dass in Banachalgebren bzw. lokalbeschränkten Algebren die Gleichheit gilt:
MLC- und MPC-Regularität
BearbeitenBegründen Sie, dass die -singulären Elemente genau die multiplikativen topologischen Nullteiler sind, d.h. für ein gilt:
Lemma: Zusammenhang MTNT und TKP
BearbeitenSei eine topologische Algebra. Dann gelten die Teilmengenbeziehung auf für Elemente mit topologisch kleinen Potenzen über folgende Teilmengenbeziehungen:
Bemerkung TNT - TKP
BearbeitenDa topologische Nullteiler auch Elemente mit topologisch kleinen Potenzen sind, folgt die Übungsaufgabe obenin einer topologische Algebra mit einer Nullumgebungsbasis aus multiplikativen Nullumgebungen auch unmittelbar aus der folgenden Teilmengenbeziehung:
Bezug zum Haupsatz über K-reguläre Elemente
BearbeitenÜber die Teilmengenbeziehung kann es Elemente in eine -Algebra geben, die zwar ein multiplikativer topologischer Nullteiler sind, aber dennoch topologisch große Potenzen besitzen. In einem solchen Fall kann ein -singuläres Element dennoch -regulär sein.
Quellennachweis
Bearbeiten- ↑ Zelazko, W., (1971), On permanently singular elements in commutative m-convex locally convex algebras, Studia Math. 37, S. 181-190;
Siehe auch
BearbeitenSeiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Topologische Invertierbarkeitskriterien' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Kurs:Topologische%20Invertierbarkeitskriterien/Multiplikative%20topologische%20Nullteiler
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.