Lineare Abbildung/Trigonalisierbar/Charakterisierungen/1/Fakt/Beweis/Aufgabe/Lösung


Von (1) nach (2). Es sei eine Basis, bezüglich der die beschreibende Matrix zu obere Dreiecksgestalt besitzt. Dann folgt durch direkte Interpretation der Matrix, dass die Untervektorräume

-invariant sind und somit eine invariante Fahne vorliegt.

Von (2) nach (1). Es sei

eine -invariante Fahne. Aufgrund des Basisergänzungssatzes gibt es eine Basis von mit

Da die Fahne invariant ist, gilt

Bezüglich dieser Basis besitzt die beschreibende Matrix zu obere Dreiecksgestalt.

Von (1) nach (3). Das charakteristische Polynom von ist gleich dem charakteristischen Polynom , wobei eine beschreibende Matrix bezüglich einer beliebigen Basis ist. Wir können also annehmen, dass eine obere Dreiecksmatrix ist. Dann ist nach Fakt das charakteristische Polynom das Produkt der Linearfaktoren zu den Diagonaleinträgen.

Aus (3) folgt (4), da das Minimalpolynom nach Fakt ein Teiler des charakteristischen Polynoms ist.

Von (4) nach (2). Wir beweisen die Aussage durch Induktion nach , wobei die Fälle

klar sind. Nach Voraussetzung und nach Fakt und Fakt besitzt einen Eigenwert. Nach Fakt gibt es einen -dimensionalen Untervektorraum

der -invariant ist. Nach Fakt ist das Minimalpolynom der Einschränkung ein Teiler des Minimalpolynoms von und zerfällt daher wie dieses in Linearfaktoren. Nach Induktionsvoraussetzung gibt es eine -invariante Fahne

und somit ist dies auch eine -invariante Fahne.