Trigonalisierbare Abbildung/Eigentheorie/Ohne Beweis/Textabschnitt
Es sei ein Körper und ein endlichdimensionaler -Vektorraum. Eine lineare Abbildung heißt trigonalisierbar, wenn sie bezüglich einer geeigneten Basis durch eine obere Dreiecksmatrix beschrieben wird.
Diagonalisierbare lineare Abbildungen sind insbesondere trigonalisierbar. Die Umkehrung gilt nicht, wie Beispiel zeigt.
Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei
eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.
- ist trigonalisierbar.
- Das charakteristische Polynom zerfällt in Linearfaktoren.
Wenn trigonalisierbar ist und bezüglich einer Basis durch die Matrix beschrieben wird, so gibt es eine invertierbare Matrix derart, dass eine obere Dreiecksmatrix ist.
Von (1) nach (2). Das charakteristische Polynom von ist gleich dem charakteristischen Polynom , wobei eine beschreibende Matrix bezüglich einer beliebigen Basis ist. Wir können also annehmen, dass eine obere Dreiecksmatrix ist. Dann ist nach Fakt das charakteristische Polynom das Produkt der Linearfaktoren zu den Diagonaleinträgen.
Von (2) nach (1). Wir beweisen die Aussage durch Induktion nach , wobei die Fälle
klar sind. Nach Voraussetzung und nach Fakt besitzt einen Eigenwert, sagen wir . Nach Fakt gibt es einen -dimensionalen Untervektorraum
der -invariant. Es sei eine Basis von , die wir durch zu einer Basis von ergänzen. Bezüglich dieser Basis wird durch eine Matrix der Gestalt
beschrieben. Die -Untermatrix beschreibt dabei die Einschränkung von auf bezüglich der gegebenen Basis. Da man das charakteristische Polynom mit jeder beschreibenden Matrix ausrechnen kann, ist (Entwicklung nach der letzten Zeile)
Daher muss auch das charakteristische Polynom in Linearfaktoren zerfallen. Wir können also auf
die Induktionsvoraussetzung anwenden und erhalten das Resultat.
Es sei eine quadratische Matrix mit komplexen Einträgen.
Dann ist trigonalisierbar.
Dies folgt aus Fakt und dem Fundamentalsatz der Algebra.