Angeordneter Körper/Exponentialfunktion auf Z/Einführung/Textabschnitt
Die Basis ist dabei der Wachstumsfaktor.
Es sei ein angeordneter Körper und ein positives Element. Dann nennt man die Abbildung
die (ganzzahlige) Exponentialfunktion zur Basis .
Es sei ein angeordneter Körper und ein positives Element. Dann besitzt die (ganzzahlige) Exponentialfunktion
zur Basis die folgenden Eigenschaften.
- Es ist
für alle .
- Es ist
- Es ist
- Es ist
für .
- Für
ist
Die erste Aussage folgt für aus der Verträglichkeit der Ordnung mit der Multiplikation und für negativ aus Fakt (1), die anderen Eigenschaften folgen aus den Potenzgesetzen.
Es sei ein angeordneter Körper und ein positives Element. Dann besitzt die (ganzzahlige) Exponentialfunktion
zur Basis die folgenden Eigenschaften.
- Bei ist die Exponentialfunktion streng wachsend.
- Bei ist die Exponentialfunktion streng fallend.
Es sei ein archimedisch angeordneter Körper und ein positives Element und
die zugehörige (ganzzahlige) Exponentialfunktion zur Basis . Es seien und , , vorgegebene Zahlen.
Dann gibt es eine ganze Zahl mit
und eine ganze Zahl mit
Häufig findet man die Vorstellung, dass exponentielles Wachstum etwas wie „explosives Wachstum“ ist. Das ist so nicht richtig. Wenn der Wachstumsfaktor zwischen
und
liegt, so ist die Exponentialfunktion sogar fallend und wenn der Faktor knapp oberhalb von , so ist das Wachstum langsam. Exponentielles Wachstum ist ein natürliches Phänomen und hat nichts mit unkontrollierbaren Entwicklungen zu tun. Allerdings zeigt der folgende Satz, dass sich exponentielles Wachstum gegenüber jedem Wachstum, das durch eine Potenzfunktion beschrieben wird, letztlich durchsetzt. Man beachte auch, dass sowohl eine Exponentialfunktion als auch eine Potenzfunktion durch den gleichen funktionalen Ausdruck, nämlich als Potenz , beschrieben wird. Der Unterschied besteht darin, ob die Grundzahl oder der Exponent als variabel betrachtet wird.
Wir vergleichen die Werte der Identität und der Quadratfunktion mit der Exponentialfunktion zur Basis
Es ergibt sich die folgende Wertetabelle.
Im Vergleich mit der identischen Funktion ist die Exponentialfunktion schon durchgängig größer (außer bei ), im Vergleich mit der Quadratfunktion bleibt die Exponentialfunktion im angegebenen Bereich (außer bei ) zurück. Man sieht aber, dass sie „ziemlich schnell“ aufholt.
Es sei ein archimedisch angeordneter Körper und gegeben mit der zugehörigen Exponentialfunktion
zur Basis . Es sei eine natürliche Zahl.
Dann gibt es ein derart, dass für alle die Abschätzung
gilt.
Wir zeigen die Existenz des durch Induktion über für jedes . Für ist die Aussage klar. Sei . Wir schreiben mit und betrachten (für ) die auf dem binomischen Lehrsatz in Verbindung mit beruhende Abschätzung
Da positiv ist, gibt es nach Fakt eine natürliche Zahl mit
Für ist dann
wie gewünscht. Es sei nun die Aussage für und alle schon bewiesen, und wir müssen sie für beweisen. Wir schreiben mit Zahlen
die es nach Aufgabe gibt. Aufgrund der Induktionsvoraussetzung gibt es eine natürliche Zahl derart, dass für alle die Abschätzung
gilt. Ebenso gibt es eine natürliche Zahl mit der Eigenschaft, dass für alle die Abschätzung
gilt. Damit gilt für alle
die Abschätzung