Determinante/Körper/Multiplikationssatz/Textabschnitt


Es sei ein Körper und .

Dann gilt für Matrizen die Beziehung

Wir fixieren die Matrix . Es sei zunächst . Dann ist nach Fakt die Matrix nicht invertierbar und damit ist auch nicht invertierbar und somit wiederum . Es sei nun invertierbar. In diesem Fall betrachten wir die wohldefinierte Abbildung

Wir wollen zeigen, dass diese Abbildung gleich der Abbildung ist, indem wir die die Determinante charakterisierenden Eigenschaften nachweisen und Fakt anwenden. Wenn die Zeilen von sind, so ergibt sich , indem man auf die Zeilen die Determinante anwendet und mit multipliziert. Daher folgt die Multilinearität und die alternierende Eigenschaft aus Aufgabe. Wenn man mit startet, so ist und daher ist




Es sei ein Körper und sei eine -Matrix über .

Dann ist

Wenn nicht invertierbar ist, so ist nach Fakt die Determinante und der Rang kleiner als . Dies gilt auch für die transponierte Matrix, sodass deren Determinante wiederum ist. Es sei also invertierbar. Wir führen diese Aussage in diesem Fall auf die entsprechende Aussage für Elementarmatrizen zurück, wofür sie direkt verifiziert werden kann, siehe Aufgabe. Es gibt nach Fakt Elementarmatrizen derart, dass

eine Diagonalmatrix ist. Nach Aufgabe ist

bzw.

Die Diagonalmatrix ändert sich beim Transponieren nicht. Da die Determinanten von Elementarmatrizen sich beim Transponieren auch nicht ändern, gilt, unter Verwendung von Fakt,


Daraus folgt, dass man die Determinante auch berechnen kann, indem man „nach einer Zeile entwickelt“, wie die folgende Aussage, der Entwicklungssatz von Laplace, zeigt.


Es sei ein Körper und sei eine -Matrix über . Zu sei diejenige Matrix, die entsteht, wenn man in die -te Zeile und die -te Spalte weglässt.

Dann ist (bei für jedes feste bzw. )

Für ist die erste Gleichung die rekursive Definition der Determinante. Daraus folgt die Aussage für aufgrund von Fakt. Durch Spalten- und Zeilenvertauschung folgt die Aussage daraus allgemein, siehe Aufgabe.