Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Arbeitsblatt 37/kontrolle
- Übungsaufgaben
Es sei ein euklidischer Vektorraum und . Zeige, dass die Abbildung
differenzierbar ist mit der Ableitung .
Es sei ein reelles Intervall und ein euklidischer Vektorraum. Es seien
zwei in differenzierbare Kurven und es sei
eine in differenzierbare Funktion. Zeige, dass folgende Aussagen gelten.
- Die Summe
ist in differenzierbar mit
- Das Produkt
ist differenzierbar in mit
Insbesondere ist für auch differenzierbar in mit
- Wenn nullstellenfrei ist, so ist auch die Quotientenfunktion
in differenzierbar mit
Es seien
differenzierbare Kurven. Berechne die Ableitung der Funktion
Formuliere das Ergebnis mit dem Skalarprodukt.
Wir betrachten die Funktionen
Es seien drei Vektoren. Wir definieren die Kurve
a) Berechne und .
b) Berechne .
c) Zeige, dass ein Vielfaches von und ein Vielfaches von ist.
d) Skizziere für , und das Bild der Kurve für .
Das Bild der durch
definierten Kurve heißt Neilsche Parabel. Zeige, dass ein Punkt genau dann zu diesem Bild gehört, wenn er die Gleichung erfüllt.
Es sei
Bestimme die Punkte , für die der Abstand der zugehörigen Kurvenpunkte zum Punkt minimal wird.
Wir betrachten die Kurve
a) Zeige, dass die Bildpunkte der Kurve die Gleichung
erfüllen.
b) Zeige, dass jeder Punkt
mit
zum Bild der Kurve gehört.
c) Zeige, dass es genau zwei Punkte
und
mit identischem Bildpunkt gibt, und dass ansonsten die Abbildung injektiv ist.
Es sei
eine differenzierbare Kurve und ein Punkt. Es sei derart, dass der Abstand (zwischen und einem Kurvenpunkt) in minimal werde. Zeige, dass senkrecht zu ist.
Es sei der Graph der reellen Betragsfunktion. Man gebe eine differenzierbare Kurve
an, deren Bild genau ist.
Es sei ein Punkt und sei . Wir betrachten die Menge
Wir nennen zwei Kurven tangential äquivalent, wenn
ist.
a) Zeige, dass dies eine Äquivalenzrelation ist.
b) Finde den einfachsten Vertreter für die Äquivalenzklassen.
c) Man gebe für jede Klasse einen weiteren Vertreter an.
d) Beschreibe die Menge der Äquivalenzklassen (also die Quotientenmenge).
Es seien endlich viele Punkte und sei . Zeige, dass es zu je zwei Punkten eine differenzierbare Kurve
mit und gibt.
- Aufgaben zum Abgeben
Aufgabe (5 (1+2+2) Punkte)Referenznummer erstellen
Betrachte die Kurve
a) Bestimme die Ableitung von in jedem Punkt .
b) Bestimme die Komponentenfunktionen von bezüglich der neuen Basis
von .
c) Berechne die Ableitung in der neuen Basis direkt und mit Hilfe von Lemma 37.8.
Aufgabe (3 Punkte)Referenznummer erstellen
Für welche Punkte ist der Abstand der Bildpunkte der Kurve
Aufgabe (4 Punkte)Referenznummer erstellen
Wir betrachten die Abbildung
die einem Punkt den eindeutigen Schnittpunkt der durch die beiden Punkte und gegebenen Geraden mit dem Einheitskreis
zuordnet. Zeige, dass diese Abbildung wohldefiniert ist und bestimme die funktionalen Ausdrücke, die diese Abbildung beschreiben. Zeige, dass differenzierbar ist. Ist injektiv, ist surjektiv?
Auf einem Jahrmarkt befindet sich ein „Doppel-Karussell“, bei dem sich ein Sitz alle Sekunden um einen kleinen Kreis mit Radius Meter dreht, wobei sich der Mittelpunkt dieses Kreises seinerseits alle Sekunden um einen großen Kreis mit Radius Meter dreht. Beide Drehungen sind im Uhrzeigersinn. Zum Zeitpunkt besitzt der Sitz zum Mittelpunkt den Abstand Meter.
a) Beschreibe diesen Bewegungsvorgang (in einem geeigneten Koordinatensystem) als eine differenzierbare Kurve.[1]
b) Berechne den Geschwindigkeitsvektor dieser Bewegung zu jedem Zeitpunkt.
c) Berechne die Geschwindigkeit (den Betrag des Geschwindigkeitsvektors) dieser Bewegung zu jedem Zeitpunkt.
Aufgabe (6 Punkte)Referenznummer erstellen
Bestimme in der Situation von Aufgabe 37.19 die Zeitpunkte, an denen die Geschwindigkeit maximal oder minimal wird.
Aufgabe (5 Punkte)Referenznummer erstellen
- Fußnoten
- ↑ Gefragt ist hier nach der mathematischen Überlagerung der beiden Bewegungen, d.h. die große Bewegung verdreht nicht das Koordinatensystem der kleinen Bewegung. Eine volle Umdrehung des kleinen Kreises liegt vor, wenn der Verbindungspfeil aus dem äußeren Drehmittelpunkt und dem Sitz wieder in die gleiche Himmelsrichtung zeigt. Bei der mechanischen Überlagerung, die vorliegt, wenn die Umdrehungsgeschwindigkeit des äußeren montierten Motors feststeht, sieht dies anders aus.
<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil II | >> |
---|