Kurs:Einführung in die Algebra (Osnabrück 2009)/Arbeitsblatt 8
- Aufwärmaufgaben
Es sei eine Gruppe und ein Element mit dem (nach Lemma 5.5) zugehörigen Gruppenhomomorphismus
Beschreibe die kanonische Faktorisierung von gemäß Korollar 8.2.
Zeige mit Hilfe der Homomorphiesätze, dass zyklische Gruppen mit der gleichen Ordnung isomorph sind.
Seien und Gruppen und seien und Gruppenhomomorphismen mit surjektiv und mit . Bestimme den Kern des induzierten Homomorphismus
Es sei eine Primzahl. Definiere einen Gruppenhomomorphismus
der und alle anderen Primzahlen auf schickt.
Berechne für die Permutation mit
die Potenzen und . Bestimme die Zyklendarstellung für diese drei Permutationen an.
Es sei eine Menge und sei eine Permutation. Definiere auf die Relation durch
Zeige, dass eine Äquivalenzrelation auf ist. Wie sieht es aus, wenn man nur zulässt, und wie, wenn endlich ist.
- Aufgaben zum Abgeben
Aufgabe (3 Punkte)
Bestimme die Gruppenhomomorphismen zwischen zwei zyklischen Gruppen. Welche sind injektiv und welche sind surjektiv?
In der folgenden Aufgabe wird das Zentrum einer Gruppe verwendet.
Es sei eine Gruppe. Das Zentrum von ist die Teilmenge
Aufgabe (3 Punkte)
Es sei eine Gruppe. Zeige, dass das Zentrum ein Normalteiler in ist. Man bringe das Zentrum in Zusammenhang mit dem Gruppenhomomorphismus
Was ist das Bild von diesem Homomorphismus, und was besagen die Homomorphiesätze in dieser Situation?
Aufgabe (3 Punkte)
Es sei die Gruppe der eigentlichen Bewegungen an einem Würfel. Man gebe eine möglichst lange Kette von sukzessiven Untergruppen
an derart, dass zwischen und keine weitere Untergruppe liegen kann.
Aufgabe (2 Punkte)
Aufgabe (2 Punkte)
Es sei eine Menge und sei eine Partition von , d.h. jedes ist eine Teilmenge von und ist die disjunkte Vereinigung der . Zeige, dass die Produktgruppe
eine Untergruppe von ist.
<< | Kurs:Einführung in die Algebra (Osnabrück 2009) | >> |
---|