Kurs:Grundkurs Mathematik (Osnabrück 2018-2019)/Teil II/Vorlesung 43



Quadratwurzeln

Wir betrachten die Quadratwurzel , von der wir die algebraische Eigenschaft, dass ihr Quadrat gleich sein soll, und eine geometrische Realisierung schon kennen. Wir wissen auch, dass es innerhalb der rationalen Zahlen eine solche Zahl nicht gibt. Es ist im Moment nicht klar, in welcher Weise es diese Zahl gibt, zu welcher Zahlenmenge sie gehören soll und wie mit ihr zu rechnen ist. Es ist aber klar, dass sie innerhalb der rationalen Zahlen eine „Lücke“ aufweist. In den nächsten Vorlesungen diskutieren wir Möglichkeiten, solche Lücken zu erkennen, zu erfassen, zu lokalisieren, rational zu approximieren und rechnerisch mit ihnen umzugehen. In einem weiteren Schritt werden wir sämtliche Lücken systematisch auffüllen und erhalten dadurch die reellen Zahlen, die ihrerseits lückenlos, oder, wie wir sagen werden, vollständig sind. Diesen Prozess kann man mathematisch mit einer Reihe von unterschiedlichen Konzepten durchführen, die alle letztlich zu ein und dem gleichen Körper der reellen Zahlen führen. Wir werden die folgenden Konzepte kennenlernen.

    • Cauchy-Folgen.
    • Wachsende, nach oben beschränkte Folgen.
    • Dezimalzifferentwicklungen (Dezimalbruchfolgen).
    • Intervallschachtelungen.
    • Dedekindsche Schnitte.

    Diese Konzepte besitzen jeweils viele Vor- und Nachteile, die wir später eingehend diskutieren werden. Als mögliche Kriterien seien aber schon mal genannt.

    1. Nähe zur Intuition der Zahlengeraden.
    2. Rechnerische Zugänglichkeit.
    3. Einfachheit der Konstruktion der reellen Zahlen.
    4. Einfachheit des Nachweises von Eigenschaften der reellen Zahlen.
    5. Bedeutung über die Einführung der reellen Zahlen hinaus.
    6. Mathematische Eleganz.

    In dieser Vorlesung werden wir die Ideen, die diesen Konzepten zugrunde liegen, beispielhaft an Quadratwurzeln vorstellen.


    Beispiel  

    Wir wissen nach Satz 42.5, dass es keine rationale Zahl gibt, deren Quadrat gleich ist. Wir können aber für jede rationale Zahl einfach bestimmen, ob ihr Quadrat größer oder kleiner als ist, und das Ergebnis können wir dann so interpretieren, dass kleiner oder größer als die nicht vorhandene Zahl ist (wir beschränken uns im Moment auf positive rationale Zahlen). Für ist zu klein und für ist zu groß. Damit müssen wir uns über die rationalen Zahlen, die kleiner als oder aber größer als sind, keine Gedanken mehr machen. Aus folgt aus den Anordungseigenschaften direkt , siehe Lemma 19.13  (8). Man muss also nur Rechnungen für rationale Zahlen zwischen und durchführen. Nehmen wir beispielsweise , so ist

    Nehmen wir , so ist

    Bei ist

    Wir wissen also, dass alle rationalen Zahlen oberhalb von (wegen ist dies die bessere Grenze) zu groß und alle rationalen Zahlen unterhalb von zu klein sind, wir müssen also nur noch Zahlen zwischen und überprüfen. Das vermittelt eine gewisse Größenvorstellung für die „gesuchte Zahl“ , es gibt aber unendlich viele Zahlen, die ebenfalls zwischen diesen beiden Zahlen liegen. Wenn wir endlich viele Zahlen dahingehend überprüft haben, ob ihr Quadrat kleiner oder größer als ist, so sind wir stets in einer vergleichbaren Situation, dass die Zahlen zwar einen „kleinen“ Bereich eingrenzen, es aber darin unendlich viele Zahlen gibt.

    Ein anderer Ansatz ist es, direkt die Mengen

    und

    zu betrachten. Dies ist eine Zerlegung von in zwei disjunkte Teilmengen. Dieses Paar (bzw. eine Menge davon, da sie ja die andere als ihr Komplement festlegt) ist eine exakte Beschreibung der durch in den rationalen Zahlen bedingten Lücke, der Spur, die auf den rationalen Zahlen hinterlässt. Rechnerisch wurde zwar nichts gewonnen, da man nach wie vor für jedes einzelne durch eine Rechnung überprüfen muss, ob zu oder zu gehört. Es ist aber immerhin ein mathematisches Objekt gefunden, das eindeutig beschreibt. Der Preis ist, dass dieses mathematische Objekt in der Potenzmenge der rationalen Zahlen angesiedelt und somit sehr abstrakt ist. Es handelt sich um einen sogenannten Dedekindschen Schnitt.



    Beispiel  

    Wir versuchen nun, die Zahl systematisch durch Dezimalbrüche zu approximieren. Wir wissen bereits

    (eine solche Abschätzung ergibt nur Sinn in einem angeordneten Körper, in dem es ein Element gibt, die Grenzen links und rechts gehören aber jedenfalls zu ). Was ist die beste Approximation mit einem Dezimalbruch mit im Nenner? Durch etwas Probieren erhält man

    Entsprechend erhält man für den Nenner die beste Approximation

    für den Nenner erhält man

    u.s.w. Wenn man die vorhergehende beste Approximation um eine Zehnerpotenz verbessern möchte, so muss man maximal vier nächste Ziffern durchprobieren, man ergänzt die bisherige untere Ziffernfolge um eine u.s.w. Die ersten approximierenden Dezimalbrüche von unten sind


    Mit dem Intervallbegriff lässt sich die zuletzt formulierte Approximation durch die Dezimalbruchfolge unter einen etwas anderen Gesichtspunkt stellen.


    Beispiel  

    Aufgrund der Berechnungen in Beispiel 43.2 wissen wir, dass in einem angeordneten Körper, der die enthält, diese in den zunehmend kleiner werdenden Intervallen

    liegt. Die Länge der Intervalle ist hier . Diese Intervalle gibt es auch in und sie helfen bei der Lokalisierung von , auch wenn diese Zahl gar nicht zu gehört. Der Vorteil einer solchen Intervallschachtelung gegenüber der Dezimalbruchfolge ist, dass sie den Wert von beiden Seiten her eingrenzt, während die Dezimalbruchfolge direkt nur untere approximierende Werte liefert. Wenn man beliebige konvergente Folgen betrachtet, so weiß man nur, dass grundsätzlich eine Approximation vorliegt, ohne dass man dies quantitativ ausdrücken kann. Bei einer Intervallschachtelung gibt jedes beteiligte Intervall eine direkte Eingrenzung, aus der der maximale Fehler unmittelbar abschätzbar ist.

    Eine spezielle Methode ist die Intervallhalbierung. Dabei halbiert man das zuvor gefundene Intervall in zwei gleichlange Hälften und schaut, ob das gesuchte Element zur kleineren oder zur größeren Hälfte gehört und nimmt dann das passende Intervall als nächstes Intervall. Bei diesem Verfahren halbiert sich die Intervalllänge mit jedem Schritt. In unserem Beispiel erhält man




    Das Heron-Verfahren

    Die in Beispiel 43.2 angeführte Dezimalbruchfolge wirkt vertraut, weil die Dezimalziffernentwicklung vertraut ist, und weil das das ist, was der Taschenrechner ausspuckt. Es gibt aber Folgen, die weit schneller die Quadratwurzel berechnen und die auch der Taschenrechner verwendet. Das sogenannte Heron-Verfahren (auch babylonisches Wurzelziehen genannt) ist ein typisches Beispiel dafür, dass Dezimalbruchfolgen im Allgemeinen nicht optimal sind, und es künstlich wäre, sich auf sie zu beschränken.


    Beispiel  

    Wir wollen die Quadratwurzel einer natürlichen Zahl „berechnen“, sagen wir von . Eine solche Zahl mit der Eigenschaft gibt es nicht innerhalb der rationalen Zahlen, wie aus der eindeutigen Primfaktorzerlegung folgt. Wenn ein solches Element ist, so hat auch diese Eigenschaft. Mehr als zwei Lösungen kann es aber nach Aufgabe 42.12 nicht geben, so dass wir nur nach der positiven Lösung suchen müssen.

    Obwohl es innerhalb der rationalen Zahlen keine Lösung für die Gleichung gibt, so gibt es doch beliebig gute Approximationen innerhalb der rationalen Zahlen dafür. Beliebig gut heißt dabei, dass der Fehler (oder die Abweichung) unter jede positive Schranke gedrückt werden kann. Das klassische Verfahren, um eine Quadratwurzel beliebig gut anzunähern, ist das Heron-Verfahren, das man auch babylonisches Wurzelziehen nennt. Dies ist ein iteratives Verfahren, d.h., die nächste Approximation wird aus den vorausgehenden Approximationen berechnet. Beginnen wir mit als erster Näherung. Wegen ist zu groß, d.h. es ist . Aus (mit positiv) folgt zunächst und daraus , d.h. . Man hat also die Abschätzungen

    wobei links eine rationale Zahl steht, wenn rechts eine rationale Zahl steht. Eine solche Abschätzung vermittelt offenbar eine quantitative Vorstellung darüber, wo liegt. Die Differenz ist ein Maß für die Güte der Approximation.

    Beim Startwert ergibt sich, dass die Quadratwurzel von zwischen und liegt. Man nimmt nun das arithmetische Mittel der beiden Intervallgrenzen, also

    Wegen ist dieser Wert wieder zu groß und daher liegt im Intervall . Von diesen Intervallgrenzen nimmt man erneut das arithmetische Mittel und setzt

    als nächste Approximation. So fortfahrend erhält man eine immer besser werdende rationale Approximation von .



    Beispiel  

    Wir berechnen eine approximierende Folge zu wie in Beispiel 43.4, allerdings mit dem Startwert . Die ersten Folgenglieder sind

    Der letzte Wert stimmt schon in acht Nachkommastellen mit dem wahren Wert überein.


    Allgemein ergibt sich das folgende Heron-Verfahren.


    Verfahren  

    Es sei ein positives Element in einem angeordneten Körper. Die Heron-Folge zum positiven Startwert ist rekursiv durch

    definiert.

    Man berechnet also sukzessive das arithmetische Mittel aus und . Das Produkt dieser beiden Zahlen ist , somit ist die eine Zahl größer und die andere Zahl kleiner als . Die Idee des Verfahrens liegt darin, in der Mitte dieser beiden Zahlen eine bessere Approximation zu finden. Die Folgenglieder der Heron-Folge sind offenbar stets positiv. Typischerweise startet man mit einer natürlichen Zahl als Anfangswert, die in der Größenordnung der Quadratwurzel von liegt.

    Die Idee, die dem Heron-Verfahren zugrunde liegt, kann man auch so verstehen: Man möchte ein Quadrat mit dem Flächeninhalt , also mit der Seitenlänge konstruieren. Man gibt sich eine approximierende Seitenlänge vor und betrachtet das Rechteck, dessen eine Seitenlänge und dessen Flächeninhalt ist. Dann muss die zweite Seitenlänge gleich sein. Wenn zu groß ist, muss zu klein sein. Für das nächste approximierende Rechteck nimmt man als eine Seitenlänge das arithmetische Mittel aus den beiden Seitenlängen des vorhergehenden Rechtecks.



    Satz  

    Es sei ein angeordneter Körper und . Es sei ein positiver Startwert und die zugehörige Heron-Folge. Dann gelten folgende Aussagen.

    1. Für ist

      und

    2. Die Heron-Folge ist ab dem ersten Glied fallend.
    3. Es ist

      für .

    4. Für die Intervalllängen

      gilt die Beziehung

      und bei gilt insbesondere

    Beweis  

    1. Es gilt
      Somit ist

      Wegen folgt nach Lemma 19.13  (8), dass ist.

    2. Aufgrund von (1) ist

      und aufgrund des strengen Wachstums des Quadrierens im positiven Teil ist

      Nach Aufgabe 24.29 liegt das arithmetische Mittel stets zwischen den beiden Zahlen, also ist

    3. Dies folgt aus (1) und (2).
    4. Nach der Rechnung in Teil (1) ist

      Bei ist


    Das eben beschriebene Verfahren liefert also zu jeder natürlichen Zahl eine Folge, die eine durch eine gewisse algebraische Eigenschaft charakterisierte Zahl beliebig gut approximiert. Bei vielen technischen Anwendungen genügt es, gewisse Zahlen nur hinreichend genau zu kennen, wobei allerdings die benötigte Güte der Approximation von der technischen Zielsetzung abhängt. Es gibt im Allgemeinen keine Güte, die für jede vorstellbare Anwendung ausreicht, so dass es wichtig ist zu wissen, wie man eine gute Approximation durch eine bessere Approximation ersetzen kann und wie viele Schritte man machen muss, um eine gewünschte Approximation zu erreichen. Dies führt zu den Begriffen Folge und Konvergenz.



    Folgen

    Wir wiederholen die Begriffe Folge und Konvergenz in einem angeordneten Körper, die wir schon in der 28. Vorlesung im Kontext des Divisionsalgorithmus erwähnt haben.


    Definition  

    Es sei eine Menge. Eine Abbildung

    nennt man auch eine Folge in . Eine Folge wird häufig in der Form

    geschrieben.

    Eine Folge wird zumeist als , oder einfach nur kurz als geschrieben. Manchmal sind Folgen nicht für alle natürlichen Zahlen definiert, sondern nur für alle natürlichen Zahlen . Alle Begriffe und Aussagen lassen sich dann sinngemäß auch auf diese Situation übertragen. Grundsätzlich gibt es Folgen in jeder Menge, für die meisten Eigenschaften, für die man sich im Kontext von Folgen interessiert, braucht man aber eine zusätzliche „topologische Struktur“, eine Struktur, mit der man „Nähe“ erfassen kann, wie sie in einem angeordneten Körper existiert. Dies gilt insbesondere für den folgenden zentralen Begriff.


    Definition  

    Es sei eine Folge in einem angeordneten Körper und es sei . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.

    Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch

    Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert.), andernfalls, dass sie divergiert.

    Man sollte sich dabei die vorgegebenen als kleine, aber positive Zahlen vorstellen, die jeweils eine gewünschte Zielgenauigkeit (oder einen erlaubten Fehler) ausdrücken. Die natürliche Zahl ist dann die Aufwandszahl, die beschreibt, wie weit man gehen muss, um die gewünschte Zielgenauigkeit zu erreichen, und zwar so zu erreichen, dass alle ab folgenden Glieder innerhalb dieser Zielgenauigkeit bleiben. Konvergenz bedeutet demnach, dass man jede gewünschte Genauigkeit bei hinreichend großem Aufwand auch erreichen kann. Je kleiner die Zielgenauigkeit, also je besser die Approximation sein soll, desto höher ist im Allgemeinen der Aufwand.

    Statt mit beliebigen positiven Zahlen kann man bei einem archimedisch angeordneten Körper auch mit den Stammbrüchen, also den rationalen Zahlen , , arbeiten, siehe Aufgabe 28.34. Zu einem und nennt man das Intervall auch die -Umgebung von .



    << | Kurs:Grundkurs Mathematik (Osnabrück 2018-2019)/Teil II | >>

    PDF-Version dieser Vorlesung

    Arbeitsblatt zur Vorlesung (PDF)