Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II/Arbeitsblatt 47



Übungsaufgaben

Bringe die Restklassengruppe mit der in Aufgabe 44.16 direkt eingeführten Gruppe in Verbindung.



Zeige, dass es in der Restklassengruppe zu jedem Elemente gibt, deren Ordnung gleich ist.



Zeige, dass es keine Untergruppe derart gibt, dass

ein Isomorphismus ist.



Bestimme die Restklassengruppe zu .



Finde in der Permutationsgruppe einen Normalteiler und bestimme die zugehörige Restklassengruppe.



Es sei eine Gruppe und ein Element mit dem (nach Lemma 44.12) zugehörigen Gruppenhomomorphismus

Beschreibe die kanonische Faktorisierung von gemäß Satz 47.8.



Es sei eine Gruppe und ein Element mit endlicher Ordnung. Zeige, dass die Ordnung von mit dem minimalen übereinstimmt, zu dem es einen Gruppenhomomorphismus

gibt, in dessen Bild das Element liegt.



Zeige mit Hilfe der Homomorphiesätze, dass zyklische Gruppen mit der gleichen Ordnung isomorph sind.



Es seien und Gruppen und seien und Gruppenhomomorphismen mit surjektiv und mit . Bestimme den Kern des induzierten Homomorphismus



Zeige, dass für jede reelle Zahl die Restklassengruppen untereinander isomorph sind.


Für die folgende Aufgabe muss man verwenden, dass jede positive natürliche Zahl eine eindeutige Faktorisierung in Primzahlen besitzt.


Es sei eine Primzahl. Definiere einen Gruppenhomomorphismus

der und alle anderen Primzahlen auf schickt.

Bestimme auch den Kern dieses Gruppenhomomorphismus.


Es seien und Gruppen und seien und Normalteiler. Zeige, dass ein Normalteiler in ist und dass eine Isomorphie

vorliegt.


Die folgende Aufgabe verwendet den topologischen Begriff der Dichtheit.

Eine Teilmenge heißt dicht, wenn es zu jeder reellen Zahl und jedem Elemente mit

gibt.


Es sei eine (additive) Untergruppe der reellen Zahlen . Zeige, dass entweder mit einer eindeutig bestimmten nichtnegativen reellen Zahl ist, oder aber dicht in ist.



Zeige, dass der Kern eines Ringhomomorphismus

ein Ideal in ist.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Es seien und Gruppen mit der Produktgruppe . Zeige, dass die Gruppe ein Normalteiler in ist, und dass die Restklassengruppe kanonisch isomorph zu ist.



Aufgabe (4 Punkte)

Bestimme die Gruppenhomomorphismen zwischen zwei zyklischen Gruppen. Welche sind injektiv und welche sind surjektiv?



Aufgabe (2 Punkte)

Zeige, dass es eine Gruppe und einen Gruppenhomomorphismus

mit der Eigenschaft gibt, dass genau dann rational ist, wenn ist.



Aufgabe (3 Punkte)

Bestimme sämtliche Gruppen mit vier Elementen.



<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)