Kurs:Zahlentheorie (Osnabrück 2016-2017)/Vorlesung 15
Bevor wir uns mit algebraischer Zahlentheorie, insbesondere mit quadratischen Zahlbereichen, genauer beschäftigen können, brauchen wir einige neue algebraische Begriffe. Zur Motivation betrachten wir das folgende kommutative Diagramm.
In der unteren Zeile stehen Körper, und zwar ist eine endliche Körpererweiterung vom Grad (d.h. die -Vektorraumdimension von ist ). Ferner ist der kleinste Körper, der die ganzen Zahlen enthält, und ebenso ist der kleinste Körper, der die Gaußschen Zahlen enthält. Die Gaußschen Zahlen sind, in einem zu präzisierenden Sinne, die „ganzen Zahlen“ im Körper .
Dies ist nicht selbstverständlich. Betrachten wir stattdessen die Körpererweiterung (ebenfalls vom Grad zwei) was ist dann der Ring der ganzen Zahlen? Es liegt das Diagramm
vor. Hier ist und ist der Ring der Eisenstein-Zahlen, den wir in der zweiten Vorlesung kennengelernt haben. Für die beiden Ringe und ist der kleinste sie enthaltende Körper. Auf den ersten Blick wirkt vermutlich natürlicher. Andererseits ist der Ring der Eisenstein-Zahlen euklidisch und damit faktoriell, hat also deutlich bessere Eigenschaften, während nach Aufgabe 5.20 nicht faktoriell ist.
Im Folgenden werden wir bestimmen, was für eine beliebige endliche Körpererweiterung der „richtige“ Ganzheitsring in ist. Zuerst präzisieren wir, was wir eben mit den Worten umschrieben haben, dass der kleinste Körper ist, der enthält.
- Der Quotientenkörper
Zu einem Integritätsbereich ist der Quotientenkörper als die Menge der formalen Brüche
mit natürlichen Identifizierungen und Operationen definiert.
Mit natürlichen Identifikationen meinen wir die (Erweiterungs- bzw. Kürzungs)-Regel
(). Für die Operationen gelten
(auf einen Hauptnenner bringen) und
Mit diesen Operationen liegt in der Tat, wie man schnell überprüft, ein kommutativer Ring vor. Und zwar handelt es sich um einen Körper, denn für jedes Element
ist das Inverse.
Der Integritätsbereich findet sich in über die Elemente wieder. Diese natürliche Inklusion
ist ein Ringhomomorphismus. Das Element hat bei das Inverse . Zwischen und gibt es keinen weiteren Körper. Ein solcher muss nämlich zu das (eindeutig bestimmte) Inverse enthalten und dann aber auch alle Produkte .
- Algebraische Erweiterungen
Es seien und kommutative Ringe und sei ein fixierter Ringhomomorphismus. Dann nennt man eine -Algebra.
Wenn eine -Algebra vorliegt, so nennt man den zugehörigen Ringhomomorphismus auch den Strukturhomomorphismus. Das vielleicht wichtigste Beispiel einer -Algebra ist der Polynomring . Ein -Algebrahomomorphismus von in eine weitere -Algebra ist durch die Zuordnung gegeben, wobei ein beliebiges fixiertes Element ist. Diese Abbildung nennt man den Einsetzungshomomorphismus. Er schickt ein Polynom , , auf , wobei die via dem Strukturhomomorphismus als Elemente in aufgefasst werden.
Wenn ein Polynom das algebraische Element annulliert (also ist), so kann man durch den Leitkoeffizienten dividieren und erhält dann auch ein normiertes annullierendes Polynom. Über einem Körper sind also die Begriffe ganz (siehe weiter unten) und algebraisch äquivalent.
Es sei ein Körper und eine - Algebra. Es sei ein über algebraisches Element. Dann heißt das normierte Polynom mit , welches von minimalem Grad mit dieser Eigenschaft ist, das Minimalpolynom von .
Die über den rationalen Zahlen algebraischen komplexen Zahlen erhalten einen speziellen Namen.
Eine komplexe Zahl heißt algebraisch oder algebraische Zahl, wenn sie algebraisch über den rationalen Zahlen ist. Andernfalls heißt sie transzendent.
Eine komplexe Zahl ist genau dann algebraisch, wenn es ein von verschiedenes Polynom mit rationalen Koeffizienten und mit gibt. Durch Multiplikation mit einem Hauptnenner kann man für eine algebraische Zahl auch ein annullierendes Polynom mit ganzzahligen Koeffizienten finden (das allerdings nicht mehr normiert ist). Eine rationale Zahl ist trivialerweise algebraisch, da sie Nullstelle des linearen rationalen Polynoms ist. Weiterhin sind die reellen Zahlen und für algebraisch. Dagegen sind die Zahlen und nicht algebraisch. Diese Aussagen sind keineswegs selbstverständlich, die Transzendenz von wurde beispielsweise von Ferdinand von Lindemann 1882 gezeigt.
Es sei ein Körper und ein Unterkörper von . Dann heißt ein Erweiterungskörper (oder Oberkörper) von und die Inklusion heißt eine Körpererweiterung.
Eine -Algebra kann man stets in natürlicher Weise als Vektorraum über dem Körper auffassen (ist kein Körper, so ist eine -Algebra ein -Modul.) Die Skalarmultiplikation wird dabei einfach über den Strukturhomomorphismus erklärt. Durch den Vektorraumbegriff hat man sofort die folgenden Begriffe zur Verfügung.
Eine Körpererweiterung heißt endlich, wenn ein endlichdimensionaler Vektorraum über ist.
Es sei eine endliche Körpererweiterung. Dann nennt man die - Vektorraumdimension von den Grad der Körpererweiterung.
Ein Element einer Körpererweiterung
definiert durch Multiplikation eine -lineare Abbildung
Über diese Konstruktion werden Norm und Spur von erklärt.
Zu einer linearen Abbildung
eines endlichdimensionalen -Vektorraumes in sich wird die Determinante und die Spur wie folgt berechnet. Man wählt eine - Basis und repräsentiert die lineare Abbildung bezüglich dieser Basis durch eine quadratische -Matrix
mit und rechnet dann die Determinante aus. Es folgt aus dem Determinantenmultiplikationssatz, dass dies unabhängig von der Wahl der Basis ist. Die Spur ist durch
gegeben, und dies ist nach Aufgabe 15.12 ebenfalls unabhängig von der Wahl der Basis.
Es sei eine endliche Körpererweiterung. Zu einem Element nennt man die Determinante der - linearen Abbildung
die Norm von . Sie wird mit bezeichnet.
Es sei eine endliche Körpererweiterung. Zu einem Element nennt man die Spur der - linearen Abbildung
die Spur von . Sie wird mit bezeichnet.
Sei eine endliche Körpererweiterung. Dann hat die Norm
folgende Eigenschaften:
- Es ist .
- Für ist , wobei den Grad der Körpererweiterung bezeichne.
- Es ist genau dann, wenn ist.
- Dies folgt aus dem Determinantenmultiplikationssatz und Lemma 8.2 (Körper- und Galoistheorie (Osnabrück 2018-2019)).
- Zu einer beliebigen Basis von wird die Multiplikation mit einen Element durch die Diagonalmatrix beschrieben, bei der jeder Diagonaleintrag ist. Die Determinante ist daher nach Lemma 16.4 (Lineare Algebra (Osnabrück 2024-2025)).
- Die eine Richtung ist klar, sei also . Dann ist eine Einheit in und daher ist die Multiplikation mit eine bijektive -lineare Abbildung , und deren Determinante ist nach Satz 16.11 (Lineare Algebra (Osnabrück 2024-2025)).
Sei eine endliche Körpererweiterung vom Grad . Dann hat die Spur
folgende Eigenschaften:
- Die Spur ist - linear, also und für .
- Für ist .
Dies folgt aus den Definitionen.
Eine Körpererweiterung
heißt einfach, wenn sie von einem Element erzeugt wird. Das bedeutet, dass es außer keinen Körper zwischen und gibt, der enthält. Das Element nennt man dann auch ein primitives Element der Körpererweiterung. Ist endlich und einfach, so ist
wobei das Minimalpolynom von ist.
Sei eine einfache endliche Körpererweiterung vom Grad . Dann hat das Minimalpolynom von die Gestalt
Das Minimalpolynom und das charakteristische Polynom der durch definierten -linearen Multiplikationsabbildung
haben beide den Grad . Nach dem Satz von Cayley-Hamilton annulliert das charakteristische Polynom die lineare Abbildung und ist somit ein Vielfaches des Minimalpolynoms, sodass sie übereinstimmen. Es sei bezüglich einer Basis von diese lineare Abbildung durch die Matrix gegeben. Dann ist das charakteristische Polynom gleich
Zum Koeffizienten leisten (in der Leibniz-Formel zur Berechnung der Determinante) nur diejenigen Permutationen einen Beitrag, bei denen -mal die Variable vorkommt, und das ist nur bei der identischen Permutation (also der Diagonalen) der Fall. Multipliziert man die Diagonale distributiv aus, so ergibt sich , sodass also gilt. Setzt man in der obigen Gleichung , so ergibt sich, dass die Determinante der negierten Matrix ist, woraus folgt.
Es sei eine endliche Körpererweiterung. Sie heißt separabel, wenn für jedes Element das Minimalpolynom separabel ist, also in keinem Erweiterungskörper eine mehrfache Nullstelle besitzt.
In unserem Zusammenhang, wo wir uns für Körpererweiterungen von interessieren, also in Charakteristik sind, ist eine Körpererweiterung stets separabel (siehe Aufgabe 15.26), und wir haben den folgenden Satz vom primitiven Element zur Verfügung.
Sei eine endliche separable Körpererweiterung. Dann wird von einem Element erzeugt, d.h. es gibt ein mit
mit einem irreduziblen (Minimal-)Polynom .
<< | Kurs:Zahlentheorie (Osnabrück 2016-2017) | >> |
---|