Lineare gewöhnliche Differentialgleichungen/1/Inhomogen/Textabschnitt


Eine Differentialgleichung der Form

mit zwei auf einem Intervall definierten Funktionen und heißt inhomogene lineare gewöhnliche Differentialgleichung.

Die folgende Aussage zeigt, dass solche Differentialgleichungen durch Integration gelöst werden können.


Es sei

eine inhomogene lineare gewöhnliche Differentialgleichung mit stetigen Funktionen . Es sei eine Stammfunktion von und es sei

eine Lösung der zugehörigen homogenen linearen Differentialgleichung.

Dann sind die Lösungen (auf ) der inhomogenen Differentialgleichung genau die Funktionen

wobei eine Stammfunktion zu ist.

Das Anfangswertproblem

(mit ) besitzt eine eindeutige Lösung.

Da keine Nullstelle besitzt, kann man jede (differenzierbare) Funktion

als

mit einer unbekannten (differenzierbaren) Funktion ansetzen. Dabei ist (für eine differenzierbare Funktion )

Daher kann man die Lösungsbedingung

als

schreiben, und diese gilt wegen genau dann, wenn

bzw.

gilt. D.h. muss eine Stammfunktion zu sein. Es sei nun noch die Anfangsbedingung vorgegeben. Mit ist auch für jedes eine Stammfunktion zu . Die Bedingung

legt dann eindeutig fest.


Die in diesem Satz verwendete Methode heißt Variation der Konstanten. Man ersetzt dabei die Lösungsfunktionen der zugehörigen homogenen Gleichung, also mit konstantem , durch eine variable Funktion .


Wir betrachten die inhomogene lineare gewöhnliche Differentialgleichung

mit Konstanten . Die Funktion

ist eine Lösung der zugehörigen homogenen Differentialgleichung. Nach Fakt müssen wir daher eine Stammfunktion zu bestimmen. Diese sind durch gegeben. Also haben die Lösungen der inhomogenen Differentialgleichung die Form

Lieber den Kaffee trinken, bevor er gemäß einer inhomogenen linearen gewöhnlichen Differentialgleichung die Außentemperatur angenommen hat.

Eine solche Differentialgleichung tritt bei Abkühlungsprozessen auf. Wenn ein (heißer) Körper (beispielsweise eine Tasse Kaffee) sich in einem umgebenden Medium (beispielsweise in einem Straßencafé) mit konstanter Außentemperatur befindet, so wird die Temperaturentwicklung des Körpers nach dem Newtonschen Abkühlungsgesetz durch die Differentialgleichung

beschrieben. Dieses Gesetz besagt, dass die Abkühlung proportional zur Differenz zwischen Außentemperatur und Körpertemperatur ist (der Proportionalitätsfaktor hängt von der Wärmeleitfähigkeit des Körpers ab). Die Lösungen sind

Dabei ist das durch eine Anfangsbedingung bestimmt, also typischerweise durch die Anfangstemperatur des Körpers zum Zeitpunkt . Für nimmt der Körper die Außentemperatur an.



Wir betrachten die inhomogene lineare gewöhnliche Differentialgleichung

mit der Anfangsbedingung . Die Exponentialfunktion ist eine Lösung der zugehörigen homogenen Differentialgleichung. Nach Fakt müssen wir daher eine Stammfunktion zu

finden. Mit zweifacher partieller Integration findet man die Stammfunktion

Also haben die Lösungen der inhomogenen Differentialgleichung die Form

Wenn wir noch die Anfangsbedingung berücksichtigen, so ergibt sich die Bedingung

also . Die Lösung des Anfangswertproblems ist also



Wir betrachten für die inhomogene lineare gewöhnliche Differentialgleichung

mit der Anfangsbedingung . Hier ist also die Störfunktion und

ist die zugehörige homogene lineare Differentialgleichung. Eine Stammfunktion von ist

Daher ist nach Fakt (bzw. nach Beispiel)

eine Lösung zur homogenen Differentialgleichung. Zur Lösung der inhomogenen Differentialgleichung brauchen wir eine Stammfunktion zu

Eine Stammfunktion dazu ist

Die Lösungen der inhomogenen Differentialgleichung haben also die Gestalt

Die Anfangsbedingung führt zu

Also ist

und die Lösung des Anfangswertproblems ist


Das folgende Beispiel zeigt, dass man schon bei recht einfach aussehenden linearen Differentialgleichungen schnell an die Integrationsgrenzen kommt.


Wir betrachten die inhomogene lineare gewöhnliche Differentialgleichung

Die zugehörige homogene Differentialgleichung hat die Lösung

somit sind nach Fakt die Lösungen der inhomogenen Gleichung gleich , wobei eine Stammfunktion von ist. Diese Funktion ist aber nicht elementar integrierbar (diese Funktion kommt auch beim sogenannten Fehlerintegral vor).