Mannigfaltigkeit/Tangentialbündel/Einführung/Textabschnitt
Zu jedem Punkt einer Mannigfaltigkeit gehört der Tangentialraum . Der Tangentialraum ist ein -dimensionaler Vektorraum, wobei die Dimension der Mannigfaltigkeit ist. Seine Elemente sind die Tangentenvektoren, das sind „infinitesimale Richtungen“ an diesem Punkt. Solche Tangenten-Richtungen an zwei verschiedenen Punkten haben zunächst einmal nichts miteinander zu tun, da ihre präzise Definition jeweils nur von beliebig kleinen offenen Umgebungen der Punkte abhängt, und da diese aufgrund der Hausdorff-Eigenschaft disjunkt gewählt werden können.
Dem steht radikal die Vorstellung gegenüber, die sich mit einer offenen Menge verbindet. Dort kann man für jeden Punkt den Tangentialraum mit dem umgebenden Vektorraum in natürlicher Weise identifizieren, indem man dem Vektor den Tangentenvektor zuordnet, der durch die lineare Kurve definiert wird. Da diese Identifizierung für jeden Punkt gilt, besteht zwischen den Tangentialräumen zu eine direkte Parallelität.
Da eine Mannigfaltigkeit durch offene Mengen überdeckt wird, die diffeomorph zu offenen Mengen in einem euklidischen Raum sind, liegt die Vermutung nahe, dass die verschiedenen Tangentialräume doch nicht völlig isoliert dastehen. Das Konzept des Tangentialbündels vereinigt alle Tangentialräume und ermöglicht es, die lokale Verbundenheit der Tangentialräume wiederzuspiegeln.
Es sei eine differenzierbare Mannigfaltigkeit. Dann nennt man die Menge
versehen mit der Projektionsabbildung
das Tangentialbündel von .
Ein Punkt in einem Tangentialbündel besitzt also stets einen Basispunkt und ist ein Element im Tangentialraum . Man schreibt einen solchen Punkt zumeist als mit und . Für eine offene Menge ist , also ein Produktraum. Dies gilt im Allgemeinen nicht für eine beliebige Mannigfaltigkeit. Das Tangentialbündel bringt zunächst einmal nur die verschiedenen Tangentialräume disjunkt zusammen, ohne dass verschiedene Tangentialräume miteinander identifiziert würden; allerdings entsteht durch die Topologie, die wir auf dem Tangentialbündel gleich einführen werden, eine zusätzliche „Nachbarschaftsstruktur“ zwischen den Tangentialräumen.
Es seien und differenzierbare Mannigfaltigkeiten und
eine differenzierbare Abbildung. Es seien und die zugehörigen Tangentialbündel. Dann versteht man unter der Tangentialabbildung
die disjunkte Vereinigung der Tangentialabbildungen in den einzelnen Punkten, also
Es sei eine differenzierbare Mannigfaltigkeit und
eine Karte mit offen. Dann induziert die Karte eine natürliche Bijektion
Dabei bewegt sich in einem reellen Intervall derart, dass ist (vergleiche Fakt). Da ein Produkt von topologischen Räumen ist, ist selbst ein topologischer Raum, und es liegt nahe, diese Topologie auf zu übertragen und daraus insgesamt eine Topologie auf dem Tangentialbündel zu konstruieren.
Es sei eine differenzierbare Mannigfaltigkeit der Dimension und
das Tangentialbündel, versehen mit der Projektionsabbildung
Das Tangentialbündel wird mit derjenigen Topologie versehen, bei der eine Teilmenge genau dann offen ist, wenn für jede Karte
die Menge offen in ist.
Insbesondere ist für jede offene Menge das Urbild offen, d.h. die Projektion ist stetig.
Es seien und differenzierbare Mannigfaltigkeiten und es sei
eine differenzierbare Abbildung. Es sei
die zugehörige Tangentialabbildung. Dann gelten folgende Aussagen.
- Es gibt ein
kommutatives Diagramm
- Für eine Karte
zu offen und mit offen gibt es ein kommutatives Diagramm
- Wenn
und
offene Teilmengen
sind und die Tangentialbündel mit bzw. identifiziert werden, so ist die Tangentialabbildung gleich
- Wenn eine weitere
Mannigfaltigkeit
und
eine weitere differenzierbare Abbildung ist, so gilt
- Die Tangentialabbildung ist stetig.
- Wenn ein Diffeomorphismus ist, so ist ein Homöomorphismus.
(1) folgt unmittelbar aus der Definition der
Tangentialabbildung.
(2) folgt aus (1) unter Verwendung der natürlichen Identifizierung
für eine offene Menge im .
(3) folgt aus
Fakt (1).
(4) folgt aus
Fakt (4).
(5). Zu einer offenen Menge
ist offen und daher ist offen. Es genügt die Stetigkeit von
nachzuweisen. Dabei kann man als ein Kartengebiet ansetzen und durch Kartengebiete überdecken. Dann genügt es, die Stetigkeit
für Kartengebiete und zu zeigen. Es gibt dann ein kommutatives Diagramm
beweisen, wobei wir nur die hintere Komponente, also , betrachten müssen. Die -te Komponente davon ist
und dies sind nach der
-Differenzierbarkeits-Voraussetzung stetige Abbildungen.
(6) folgt aus (5).