Metrische Räume/Stetige Abbildung/Einführung/Textabschnitt
Es seien und metrische Räume,
eine Abbildung und . Die Abbildung heißt stetig in , wenn für jedes ein derart existiert, dass
gilt. Die Abbildung heißt stetig, wenn sie stetig in für jedes ist.
Statt mit den abgeschlossenen Ballumgebungen könnte man hier genauso gut mit den offenen Ballumgebungen arbeiten. Die einfachsten Beispiele für stetige Abbildungen sind konstante Abbildungen, die Identität eines metrischen Raumes und die Inklusion einer mit der induzierten Metrik versehenen Teilmenge eines metrischen Raumes. Siehe dazu die Aufgaben. Bei stimmt diese Definition mit der bisherigen überein.
Der folgende Satz heißt Folgenkriterium und ist eine direkte Verallgemeinerung von
Fakt.
Es sei
eine Abbildung zwischen den metrischen Räumen und und sei ein Punkt. Dann sind folgende Aussagen äquivalent.
- ist stetig im Punkt .
- Für jedes
gibt es ein
mit der Eigenschaft, dass aus
folgt, dass
ist.
- Für jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .
Die Äquivalenz von (1) und (2) ist klar.
Es sei nun (2) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass
ist. Dazu sei
gegeben. Wegen (2) gibt es ein mit der angegebenen Eigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle
die Abschätzung
gilt. Nach der Wahl von ist dann
Es sei (3) erfüllt und vorgegeben. Wir nehmen an, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand größer als besitzt. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit
Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenwerte zu zumindest ist. Dies ist ein Widerspruch zu (3).
Es sei
eine Abbildung zwischen den metrischen Räumen und . Dann sind folgende Aussagen äquivalent.
- ist stetig in jedem Punkt .
- Für jeden Punkt und jedes gibt es ein mit der Eigenschaft, dass aus folgt, dass ist.
- Für jeden Punkt und jede konvergente Folge in mit ist auch die Bildfolge konvergent mit dem Grenzwert .
- Für jede offene Menge ist auch das Urbild offen.
Die Äquivalenz der ersten drei Formulierungen folgt direkt aus
Fakt.
Es sei (1) erfüllt und eine offene Menge
gegeben mit dem Urbild
.
Sei
ein Punkt mit dem Bildpunkt
.
Da offen ist, gibt es nach Definition ein
mit
.
Nach (2) gibt es ein
mit
.
Daher ist
und wir haben eine offene Ballumgebung von innerhalb des Urbilds gefunden. Deshalb ist offen.
Es sei (4) erfüllt und
mit
und
vorgegeben. Da der offene Ball offen ist, ist wegen (4) auch das Urbild offen. Da zu dieser Menge gehört, gibt es ein
mit
sodass (1) erfüllt ist.
Dies folgt am einfachsten aus der Charakterisierung von stetig mit offenen Mengen, siehe Fakt.