Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Arbeitsblatt 16/kontrolle



Übungsaufgaben

Es sei eine konvergente Folge in . Wir betrachten auf einem reellen Intervall die Funktionenfolge

Zeige, dass diese Funktionenfolge gleichmäßig konvergiert, und bestimme die Grenzfunktion.



Es sei eine konvergente Folge in . Wir betrachten die Funktionenfolge

Zeige, dass diese Funktionenfolge punktweise, aber im Allgemeinen nicht gleichmäßig konvergiert. Was ist die Grenzfunktion?



Es sei eine Menge und seien

und

zwei gleichmäßig konvergente Funktionenfolgen. Zeige, dass auch die Summenfolge

gleichmäßig konvergent ist.



Zu betrachten wir die Funktionen

die durch

definiert sind. Zeige, dass diese Funktionen stetig sind, und dass diese Funktionenfolge punktweise, aber nicht gleichmäßig gegen die Nullfunktion konvergiert.



Man gebe ein Beispiel einer Funktionenfolge

derart, dass sämtliche nicht stetig sind, die Funktionenfolge aber gleichmäßig gegen eine stetige Grenzfunktion konvergiert.



Es sei eine Menge und

die Menge der beschränkten komplexwertigen Funktionen auf . Zeige, dass ein komplexer Vektorraum ist.



Es sei eine Folge von komplexen Zahlen und die zugehörige Potenzreihe. Zeige, dass deren Konvergenzradius mit dem Konvergenzradius der um „verschobenen“ Potenzreihe

übereinstimmt.



Bestimme, für welche komplexe Zahlen die Reihe

konvergiert.



Zeige, dass die Exponentialreihe auf nicht gleichmäßig konvergiert.



Aufgabe Aufgabe 16.10 ändern

Es seien und Potenzreihen mit positiven Konvergenzradien, deren Minimum sei. Zeige die folgenden Aussagen.

  1. Die Potenzreihe mit ist konvergent auf und stellt dort die Summenfunktion dar.
  2. Die Potenzreihe mit ist konvergent auf und stellt dort die Produktfunktion dar.




Aufgaben zum Abgeben

Betrachte die Funktionenfolge

Zeige, dass diese Folge für punktweise konvergiert, und untersuche die Folge auf gleichmäßige Konvergenz für die verschiedenen Definitionsmengen



Betrachte die Potenzreihe

Zeige, dass diese Potenzreihe den Konvergenzradius besitzt, und dass die Reihe noch für alle , , konvergiert.



Es sei eine Menge und

die Menge der beschränkten komplexwertigen Funktionen auf . Zeige, dass die Supremumsnorm auf folgende Eigenschaften erfüllt.

  1. für alle .
  2. genau dann, wenn ist.
  3. Für und gilt
  4. Für gilt



Aufgabe (5 Punkte)Aufgabe 16.14 ändern

Es sei

eine Potenzreihe, die für ein auf konvergiere und dort die Nullfunktion darstelle. Zeige, dass dann für alle ist (d.h. die Potenzreihe ist die Nullreihe).



Es sei und sei für jedes eine konvergente Folge

in gegeben, deren Limes mit bezeichnet sei. Wir betrachten die Folge von Polynomen vom Grad , die durch

definiert sind. Zeige, dass diese Funktionenfolge auf jeder abgeschlossenen Kreisscheibe gleichmäßig gegen

konvergiert.


<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)