Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Arbeitsblatt 47/kontrolle



Übungsaufgaben

Es sei ein Körper und ein - Vektorraum von endlicher Dimension. Zeige, dass der Dualraum die gleiche Dimension wie besitzt.



Betrachte die Linearform

  1. Bestimme den Vektor mit der Eigenschaft

    wobei das Standardskalarprodukt bezeichnet.

  2. Es sei und es sei die Einschränkung von auf . Bestimme den Vektor mit der Eigenschaft

    wobei die Einschränkung des Standardskalarprodukts auf bezeichnet.





Es sei ein endlichdimensionaler reeller Vektorraum. Zeige, dass eine von verschiedene lineare Abbildung

keine lokalen Extrema besitzt. Gilt dies auch für unendlichdimensionale Vektorräume? Braucht man dazu Differentialrechnung?



Berechne den Gradienten der Funktion

in jedem Punkt .



Berechne den Gradienten der Funktion

in jedem Punkt mit



Es sei ein euklidischer Vektorraum, eine offene Menge, ein Punkt und

eine in differenzierbare Funktion. Zeige, dass und im Punkt den gleichen Gradienten besitzen.



Es sei ein euklidischer Vektorraum, eine offene Menge, ein Punkt und

eine in differenzierbare Funktion. Zeige, dass ein Vektor genau dann zum Kern von gehört, wenn er orthogonal zum Gradienten ist.



Bestimme die kritischen Punkte der Funktion



Bestimme die kritischen Punkte der Funktion



Bestimme die kritischen Punkte der Funktion




Aufgaben zum Abgeben

Berechne den Anstieg der Funktion

im Punkt in Richtung des Winkels . Für welchen Winkel ist der Anstieg maximal?



Betrachte die Funktion

  1. Bestimme den Gradienten von im Punkt bezüglich des Standardskalarprodukts .
  2. Es sei

    und es sei die Einschränkung von auf . Bestimme den Gradienten von bezüglich der Einschränkung des Standardskalarprodukts auf .

  3. Zeige, dass die orthogonale Projektion von auf ist.



Bestimme die kritischen Punkte der Funktion



Bestimme die kritischen Punkte zur Funktion

aus Beispiel 46.9.



<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)