Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Arbeitsblatt 48
- Übungsaufgaben
Es sei ein Körper, ein endlichdimensionaler - Vektorraum und eine Bilinearform auf . Zeige, dass genau dann symmetrisch ist, wenn es eine Basis von mit
für alle gibt.
Es sei ein endlichdimensionaler reeller Vektorraum mit einer symmetrischen Bilinearform auf . Es sei eine Orthogonalbasis auf mit der Eigenschaft für alle . Zeige, dass positiv definit ist.
Es sei ein endlichdimensionaler reeller Vektorraum und eine symmetrische Bilinearform auf . Zeige, dass die Gramsche Matrix zu dieser Bilinearform bezüglich einer geeigneten Basis eine Diagonalmatrix ist, deren Diagonaleinträge oder sind.
Es sei ein -dimensionaler reeller Vektorraum und eine symmetrische Bilinearform auf . Zeige, dass folgende Eigenschaften äquivalent sind.
- Die Bilinearform ist nicht ausgeartet.
- Die Gramsche Matrix der Bilinearform bezüglich einer Basis ist invertierbar.
- Die Bilinearform ist vom Typ (mit einem .)
Es sei eine nicht-ausgeartete symmetrische Bilinearform vom Typ auf einem - dimensionalen reellen Vektorraum. Es sei eine Basis von und es sei die Gramsche Matrix zu bezüglich dieser Basis. Zeige, dass das Vorzeichen von gleich ist.
Man gebe ein Beispiel einer symmetrischen Bilinearform, das zeigt, dass der Unterraum maximaler Dimension, auf dem die Einschränkung der Form positiv definit ist, nicht eindeutig bestimmt ist.
Es sei ein endlichdimensionaler reeller Vektorraum, eine offene Menge und
eine zweimal stetig differenzierbare Funktion. Zeige, dass die Hesse-Form von in jedem Punkt symmetrisch ist.
Bestimme den Typ der Hesse-Form zur Funktion
Bestimme den Typ der Hesse-Form zur Funktion
Es sei
eine -fach stetig differenzierbare Funktion, ein Punkt und . Es sei
Zeige, dass -fach stetig differenzierbar ist und dass
(mit Richtungsableitungen) gilt.
- Aufgaben zum Abgeben
Aufgabe (3 Punkte)
Man gebe ein Beispiel für einen endlichdimensionalen reellen Vektorraum mit einer symmetrischen Bilinearform auf und einer Basis von derart, dass für alle ist, aber nicht positiv definit ist.
Aufgabe (3 Punkte)
Bestimme die Gramsche Matrix des Standardskalarproduktes im bezüglich der Basis und .
Aufgabe (5 Punkte)
Aufgabe (5 Punkte)
Es sei
eine zweimal stetig differenzierbare Funktion und ein kritischer Punkt. Die Hesse-Matrix in besitze sowohl positive als auch negative Eigenwerte. Zeige, dass in kein lokales Extremum besitzt.
Aufgabe (4 Punkte)
Bestimme die globalen Extrema für die Funktion
wobei das durch die Eckpunkte und gegebene abgeschlossene (volle) Dreieck ist.
Aufgabe (6 Punkte)
<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil II | >> |
---|