Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Vorlesung 32/kontrolle
Nach Beispiel 31.6 existiert für das uneigentliche Integral , so dass aufgrund von Lemma 31.10 auch die Reihen konvergieren. Daher ist die folgende Funktion wohldefiniert.
Die Riemannsche -Funktion ist für mit durch
definiert.
Diese Funktion lässt sich komplex fortsetzen und spielt eine wichtige Rolle in der Zahlentheorie.
- Die Fakultätsfunktion
Die Fakultät einer natürlichen Zahl ist
.
Dabei gilt die rekursive Beziehung
.
Gibt es eine Möglichkeit, diese für die natürlichen Zahlen definierte Funktion auf durch eine differenzierbare Funktion fortzusetzen? Ist es sogar möglich, dass dabei die Beziehung
für jedes gilt? Wir werden mit Hilfe von uneigentlichen Integralen zeigen, dass dies in der Tat möglich ist.
Es sei . Wir betrachten die Funktion
Wir behaupten, dass das uneigentliche Integral
existiert. Für den rechten Rand (also ) betrachten wir eine natürliche Zahl . Da die Exponentialfunktion schneller wächst als jede Polynomfunktion (siehe Aufgabe 15.14), gibt es ein derart, dass für alle gilt. Daher ist
Für wächst das linke Integral und ist durch beschränkt, sodass der Grenzwert existiert. Für das Verhalten am linken Rand (das nur bei problematisch ist) müssen wir wegen nach Lemma 31.4 nur betrachten. Eine Stammfunktion davon ist , deren Exponent positiv ist, sodass der Limes für existiert.
Das uneigentliche Integral
existiert also für . Dies ist der Ausgangspunkt für die Definition der Fakultätsfunktion.
Die für durch
definierte Funktion heißt Gammafunktion, mit der häufiger gearbeitet wird. Mit der Fakultätsfunktion werden aber die Formeln etwas schöner und insbesondere wird der Zusammenhang zur Fakultät, der in der folgenden Aussage aufgezeigt wird, deutlicher.
Die Fakultätsfunktion besitzt die folgenden Eigenschaften.
- Es ist für .
- Es ist .
- Es ist für natürliche Zahlen .
- Es ist .
(1) Mittels partieller Integration ergibt sich (für reelle Zahlen bei fixiertem )
Für geht und für geht
(da positiv ist).
Wendet man auf beide Seiten diese Grenzwertprozesse an, so erhält man
.
(2). Es ist
(3) folgt aus (1) und (2) durch Induktion.
(4). Es ist
Dies ergibt sich mit der Substitution
und dem sogenannten
Fehlerintegral.
Die Fakultätsfunktion ist auch stetig und differenzierbar, was wir aber nicht beweisen werden.
- Euklidische Vektorräume
Wir beginnen nun mit der höherdimensionalen Analysis. Dazu müssen wir zunächst die topologischen Grundbegriffe (Abstand, Folgen, Stetigkeit, Grenzwerte) auf den erweitern. Wir beginnen mit Vektorräumen mit einem Skalarprodukt.
Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge, und die Lagebeziehung von zwei Vektoren zueinander wird durch den Winkel zwischen ihnen ausgedrückt. Länge und Winkel werden beide durch den Begriff des Skalarprodukts präzisiert. Dafür muss ein reeller Vektorraum oder ein komplexer Vektorräume vorliegen.
Es sei ein reeller Vektorraum. Ein Skalarprodukt auf ist eine Abbildung
mit folgenden Eigenschaften:
- Es ist
für alle , und ebenso in der zweiten Komponente.
- Es ist
für alle .
- Es ist für alle und genau dann, wenn ist.
Die dabei auftretenden Eigenschaften heißen Bilinearität, Symmetrie und positive Definitheit.
Auf dem ist die Abbildung
ein Skalarprodukt, das man das Standardskalarprodukt nennt. Einfache Rechnungen zeigen, dass dies in der Tat ein Skalarprodukt ist.
Beispielsweise ist im mit dem Standardskalarprodukt
Ein reeller, endlichdimensionaler Vektorraum, der mit einem Skalarprodukt versehen ist, heißt euklidischer Vektorraum.
Zu einem euklidischen Vektorraum ist jeder Untervektorraum selbst wieder ein euklidischer Vektorraum, da man das Skalarprodukt auf einschränken kann und dabei die definierenden Eigenschaften erhalten bleiben.
Im komplexen Fall sieht die Definition etwas anders aus. Es liegt keine Bilinearität und keine Symmetrie im strengen Sinne vor, sondern nur bis auf komplexe Konjugation. Diese Variante ist nötig, um die positive Definitheit zu sichern, auf der der Abstandsbegriff ruht.
Es sei ein komplexer Vektorraum. Ein Skalarprodukt auf ist eine Abbildung
mit folgenden Eigenschaften:
- Es ist
für alle , und
für alle , .
- Es ist
für alle .
- Es ist für alle und genau dann, wenn ist.
Wir werden die beiden Fälle parallel behandeln. Wenn man zu einem komplexen Vektorraum mit einem Skalarprodukt den zugrunde liegenden reellen Vektorraum betrachten, so ist der Realteil des komplexen Skalarprodukts ein reelles Skalarprodukt, siehe Aufgabe 32.8. Daher kann man sich bei Abstandsfragen auf den reellen Fall konzentrieren.
- Norm und Abstand
Mit einem Skalarprodukt kann man die Länge eines Vektors und damit auch den Abstand zwischen zwei Vektoren erklären.
Es sei ein Vektorraum über mit einem Skalarprodukt . Dann nennt man zu einem Vektor die reelle Zahl
die Norm von .
Es sei ein Vektorraum über mit einem Skalarprodukt und der zugehörigen Norm .
Dann gilt die Cauchy-Schwarzsche Abschätzung, nämlich
für alle .
Bei ist die Aussage richtig. Es sei also und damit auch . Damit hat man die Abschätzungen
Multiplikation mit und Wurzelziehen ergibt das Resultat.
Für von verschiedene Vektoren und in einem euklidischen Vektorraum folgt aus der der Ungleichung von Cauchy-Schwarz, dass
ist. Damit kann man mit Hilfe der trigonometrischen Funktion Kosinus (als bijektive Abbildung ) bzw. der Umkehrfunktion den Winkel zwischen den beiden Vektoren definieren, nämlich durch
Der Winkel ist also eine reelle Zahl zwischen und . Die obige Gleichung kann man auch als
schreiben, was die Möglichkeit eröffnet, das Skalarprodukt in dieser Weise zu definieren. Allerdings muss man dann für den Winkel eine unabhängige Definition finden. Dieser Zugang ist etwas intuitiver, hat aber rechnerisch und beweistechnisch viele Nachteile.
Es sei ein Vektorraum über mit einem Skalarprodukt . Dann gelten für die zugehörige Norm folgende Eigenschaften.
- Es ist .
- Es ist genau dann, wenn ist.
- Für
und
gilt
- Für
gilt
Die ersten beiden Eigenschaften folgen direkt aus der Definition des
Skalarprodukts. MDLUL/Skalarprodukts (K)
Die Multiplikativität folgt aus
Zum Beweis der Dreiecksungleichung schreiben wir
Aufgrund von
Satz 32.11
ist dies . Diese Abschätzung überträgt sich auf die Quadratwurzeln.
Es sei ein Vektorraum über mit einem Skalarprodukt und der zugehörigen Norm .
Dann gilt die Beziehung
Beweis
Es sei ein Vektorraum über mit einem Skalarprodukt . Zu Vektoren nennt man
den Abstand zwischen und .
Es sei ein Vektorraum über mit einem Skalarprodukt . Dann besitzt der zugehörige Abstand die folgenden Eigenschaften (dabei sind ).
- Es ist .
- Es ist genau dann, wenn .
- Es ist .
- Es ist
Beweis
Damit ist ein euklidischer Raum insbesondere ein metrischer Raum, womit wir uns in den nächsten Vorlesungen beschäftigen werden.
- Isometrien
Es seien und euklidische Vektorräume und sei
eine lineare Abbildung. Dann heißt eine Isometrie, wenn für alle gilt:
Es seien und euklidische Vektorräume und sei
eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.
- ist eine Isometrie.
- Für alle ist .
- Für alle ist .
Die Richtungen und sind Einschränkungen und folgt aus Lemma 32.14.