Kurs:Lineare Algebra (Osnabrück 2024-2025)/Teil I/Vorlesung 11

So gerne Vorli als Vorlesungshund arbeitet, hinterher ist sie doch ganz schön ausgepowert von all der Energie, die sie zum Fließen gebracht hat. Da braucht sie erstmal ein Nickerchen um zu regenerieren.




Untervektorräume unter linearen Abbildungen

Eine typische und wohl auch namensgebende Eigenschaft einer linearen Abbildung ist, dass sie Geraden wieder auf Geraden (oder Punkte) abbildet. Allgemeiner ist folgende Aussage.


Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung. Dann gelten folgende Aussagen.

  1. Für einen Untervektorraum ist auch das Bild ein Untervektorraum von .
  2. Insbesondere ist das Bild der Abbildung ein Untervektorraum von .
  3. Für einen Untervektorraum ist das Urbild ein Untervektorraum von .
  4. Insbesondere ist ein Untervektorraum von .

Beweis

Siehe Aufgabe 11.2.



Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung. Dann nennt man

den Kern von .

Der Kern ist also nach der obigen Aussage ein Untervektorraum von .

Zu einer - Matrix ist der Kern der durch gegebenen linearen Abbildung

einfach der Lösungsraum des homogenen linearen Gleichungssystems


Wichtig ist das folgende Injektivitätskriterium.


Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung.

Dann ist genau dann injektiv, wenn ist.

Wenn die Abbildung injektiv ist, so kann es neben keinen weiteren Vektor mit geben. Also ist .
Es sei umgekehrt und seien gegeben mit . Dann ist wegen der Linearität

Daher ist und damit .



Die Dimensionsformel

Die folgende Aussage heißt Dimensionsformel.


Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung und sei endlichdimensional.

Dann gilt

Es sei . Es sei der Kern der Abbildung und seine Dimension (). Es sei

eine Basis von . Aufgrund des Basisergänzungssatzes gibt es Vektoren

derart, dass

eine Basis von ist. Wir behaupten, dass

eine Basis des Bildes ist. Es sei ein Element des Bildes . Dann gibt es ein mit . Dieses lässt sich mit der Basis als

schreiben. Dann ist

sodass sich als Linearkombination der schreiben lässt. Zum Beweis der linearen Unabhängigkeit der , , sei eine Darstellung der Null gegeben,

Dann ist

Also gehört zum Kern der Abbildung und daher kann man

schreiben. Da insgesamt eine Basis von vorliegt, folgt, dass alle Koeffizienten sein müssen, also sind insbesondere .



Es sei ein Körper, und seien - Vektorräume und

sei eine - lineare Abbildung und sei endlichdimensional. Dann nennt man

den Rang von .

Die Dimensionsformel kann man auch als

ausdrücken.

Es sei eine lineare Abbildung mit endlichdimensional. Die Dimensionsformel besitzt die folgenden Spezialfälle. Wenn die Nullabbildung ist, so ist und

Wenn injektiv ist, so ist und

Der Rang liegt stets zwischen und der Dimension des Ausgangsraumes . Wenn surjektiv ist, so ist

und



Wir betrachten die durch die Matrix

gegebene lineare Abbildung

Zur Bestimmung des Kerns müssen wir das homogene lineare Gleichungssystem

lösen. Der Lösungsraum ist

und dies ist der Kern von . Der Kern ist also eindimensional und daher ist die Dimension des Bildes nach der Dimensionsformel gleich .




Es sei ein Körper und es seien und Vektorräume über der gleichen Dimension . Es sei

eine lineare Abbildung.

Dann ist genau dann injektiv, wenn surjektiv ist.

Dies folgt aus der Dimensionsformel und Lemma 11.4.



Verknüpfung von linearen Abbildungen und Matrizen

In der letzten Vorlesung haben wir unter der Voraussetzung, dass Basen fixiert sind, die Korrespondenz zwischen linearen Abbildungen und Matrizen besprochen. Diese Korrespondenz berücksichtigt auch Hintereinanderschaltungen und Matrizenmultiplikation, wie das folgenden Lemma zeigt.


Bei der Korrespondenz zwischen linearen Abbildungen und Matrizen entsprechen sich die Hintereinanderschaltung von linearen Abbildungen und die Matrizenmultiplikation.

Damit ist folgendes gemeint: es seien Vektorräume über einem Körper mit Basen

Es seien

lineare Abbildungen. Dann gilt für die beschreibenden Matrizen von und der Hintereinanderschaltung die Beziehung

Wir betrachten das kommutative Diagramm

wobei die Kommutativität auf der Beziehung

aus Lemma 10.14 beruht. Dabei sind die (inversen) Koordinatenabbildungen jeweils bijektiv, und somit ist

Also ist insgesamt

wobei hier überall die Abbildungsverknüpfung steht. Nach Aufgabe 10.20 stimmt die letzte Verknüpfung mit dem Matrixprodukt überein.

Daraus folgt beispielsweise, dass das Produkt von Matrizen assoziativ ist.



Lineare Abbildungen und Basiswechsel



Es sei ein Körper und es seien und endlichdimensionale - Vektorräume. Es seien und Basen von und und Basen von . Es sei

eine lineare Abbildung, die bezüglich der Basen und durch die Matrix beschrieben werde.

Dann wird bezüglich der Basen und durch die Matrix

beschrieben, wobei und die Übergangsmatrizen sind, die die Basiswechsel von nach und von nach beschreiben.

Die linearen Standardabbildungen bzw. zu den Basen seien mit bezeichnet. Wir betrachten das kommutative Diagramm

wobei die Kommutativität auf Lemma 9.1 und Lemma 10.14 beruht. In dieser Situation ergibt sich insgesamt



Es sei ein Körper und es sei ein endlichdimensionaler - Vektorraum. Es sei

eine lineare Abbildung. Es seien und Basen von .

Dann besteht zwischen den Matrizen, die die lineare Abbildung bezüglich bzw. (beidseitig) beschreiben, die Beziehung

Dies folgt direkt aus Lemma 11.11.


Es ist eine wichtige Zielsetzung der linearen Algebra, zu einer gegebenen linearen Abbildung eine Basis derart zu finden, dass die beschreibende Matrix „möglichst einfach“ wird.


<< | Kurs:Lineare Algebra (Osnabrück 2024-2025)/Teil I | >>
PDF-Version dieser Vorlesung
Arbeitsblatt zur Vorlesung (PDF)