Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 26/kontrolle




Stammfunktionen zu rationalen Funktionen

Wir möchten zeigen, wie man zu einer rationalen Funktion (gegeben durch zwei Polynome , ) eine Stammfunktion finden kann. Im Allgemeinen gehen bei der Bestimmung einer solchen Stammfunktion verschiedene Techniken ein, die wir im Laufe der Vorlesung kennengelernt haben: die Division mit Rest für Polynome, das Lösen inhomogener linearer Gleichungssysteme und Integrationsregeln.

Wenn das Nennerpolynom ist, so handelt es sich einfach um ein Polynom , das problemlos zu integrieren ist. Für die Funktion ist der natürliche Logarithmus eine Stammfunktion.[1] Damit ist auch eine Funktion vom Typ

(mit ) integrierbar, eine Stammfunktion ist . Damit kann man überhaupt beliebige rationale Funktionen der Form

integrieren. Die Division mit Rest[2] führt zu einer Darstellung

mit einem weiteren Polynom , und wobei das Restpolynom konstant ist, da sein Grad kleiner als der Grad des linearen Polynoms ist, durch das die Division durchgeführt wird. Aus dieser Gleichung erhält man die Darstellung

wobei wir für die beiden Summanden Stammfunktionen angeben können. Die Division mit Rest wird auch im allgemeinen Fall entscheidend sein. Davor betrachten wir aber noch den Fall eines quadratischen Nennerpolynoms mit Zähler , also

mit . Durch Multiplikation mit kann man den Koeffizienten vor zu normieren. Durch quadratisches Ergänzen kann man

schreiben. Mit der neuen Variablen (bzw. mit der Substitution ) schreibt sich dies als . Mit einer weiteren Substitution unter Verwendung der Quadratwurzel von bzw. von gelangt man zu

Im ersten Fall gilt

und im zweiten Fall gilt

wie früher gezeigt wurde. Für die inversen Funktionen zu Potenzen von quadratischen nullstellenfreien Polynomen werden die Stammfunktionen durch folgende Rekursionsformel bestimmt.


Lemma  Lemma 26.1 ändern

Es sei (mit ) ein quadratisches Polynom ohne reelle Nullstelle (d.h., dass ist).

Dann ist[3]

eine Stammfunktion von

und für gilt die Rekursionsformel

Ableiten ergibt


Zum Beweis der Rekursionsformel setzen wir und leiten ab.

Division durch und Umstellen ergibt

Dies ist die Behauptung.


Mit Lemma 26.1 kann man auch rationale Funktionen der Form

(mit ,) integrieren, wo also das Zählerpolynom linear und das Nennerpolynom eine Potenz eines quadratischen Polynoms ist. Bei ist

D.h., dass die Differenz zwischen dieser Ableitung und der zu integrierenden Funktion vom Typ

ist, was wir aufgrund von Lemma 26.1 integrieren können. Bei ist

und wieder ist das Integral auf eine schon behandelte Situation zurückgeführt.


Wir möchten für beliebige rationale Funktionen mit Stammfunktionen bestimmen. Dies geht grundsätzlich immer, vorausgesetzt, dass man eine Faktorzerlegung des Nennerpolynoms besitzt. Aufgrund der reellen Version des Fundamentalsatzes der Algebra gibt es eine Faktorzerlegung

wobei die quadratische Polynome ohne reelle Nullstellen sind. Das Bestimmen der Stammfunktionen zu rationalen Funktionen beruht auf der Partialbruchzerlegung von rationalen Funktionen, die wir zuerst besprechen.



Partialbruchzerlegung

Die Partialbruchzerlegung liefert eine wichtige Darstellungsform für eine rationale Funktion , bei der die Nenner besonders einfach werden. Wir beginnen mit dem Fall , wo wir den Fundamentalsatz der Algebra zur Verfügung haben.


Es seien , , Polynome und es sei

mit verschiedenen .

Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , mit

Beweis

Wir verzichten auf den Beweis, obwohl uns die dazu benötigten Methoden zur Verfügung stehen.


Wir wenden uns nun der reellen Situation zu.


Es seien , , Polynome und es sei

mit verschiedenen und verschiedenen quadratischen Polynomen ohne reelle Nullstellen.

Dann gibt es ein eindeutig bestimmtes Polynom und eindeutig bestimmte Koeffizienten , , , und eindeutig bestimmte lineare Polynome , , , mit

Beweis

Auch hier verzichten wir auf den Beweis, der auf der komplexen Partialbruchzerlegung beruht.


Neben dem Umweg über die komplexe Partialbruchzerlegung gibt es weitere Methoden, in Beispielen die reelle Partialbruchzerlegung zu bestimmen. Grundsätzlich bedeutet das Bestimmen der (reellen oder komplexen) Koeffizienten in der Partialbruchzerlegung, ein (inhomogenes) lineares Gleichungssystem zu lösen, wobei man sowohl durch Koeffizientenvergleich als auch durch das Einsetzen von bestimmten Zahlen zu hinreichend vielen linearen Gleichungen kommt.


Beispiel  Beispiel 26.5 ändern

Wir betrachten die rationale Funktion

wobei der Faktor rechts reell nicht weiter zerlegbar ist. Daher muss es eine eindeutige Darstellung

geben. Multiplikation mit dem Nennerpolynom führt auf

Koeffizientenvergleich führt auf das inhomogene lineare Gleichungssystem

mit den eindeutigen Lösungen

Die Partialbruchzerlegung ist also



Beispiel  Beispiel 26.6 ändern

Wir betrachten die rationale Funktion

wo die Faktorzerlegung des Nennerpolynoms sofort ersichtlich ist. Der Ansatz

führt durch Multiplikation mit dem Nennerpolynom auf

Koeffizientenvergleich führt auf das inhomogene lineare Gleichungssystem

mit der Lösung

Insgesamt ist die Partialbruchzerlegung also gleich




Integration rationaler Funktionen

Es sei eine rationale Funktion

gegeben, für die eine Stammfunktion gefunden werden soll. Dabei seien und reelle Polynome. Man geht folgendermaßen vor.

  1. Bestimme die reelle Faktorzerlegung des Nennerpolynoms .
  2. Finde die Partialbruchzerlegung
  3. Bestimme für , für jedes

    und für jedes

    eine Stammfunktion.


Wir möchten eine Stammfunktion zu

bestimmen. Nach Beispiel 26.5 ist die reelle Partialbruchzerlegung gleich

Als Stammfunktion ergibt sich daher

wobei wir für den rechten Summanden Lemma 26.1 verwendet haben.



Wir möchten eine Stammfunktion zu

bestimmen. Nach Beispiel 26.6 ist die reelle Partialbruchzerlegung gleich

Als Stammfunktion ergibt sich daher




Stammfunktionen zu rationalen Funktionen in der Exponentialfunktion

Nachdem wir nun rationale Funktionen integrieren können, können wir auch für eine ganze Reihe von Funktionen eine Stammfunktion finden, die wir durch gewisse Standardsubstitution auf eine rationale Funktion zurückführen können. Wir führen dies exemplarisch für Funktionen durch, die sich als rationale Funktionen in der Exponentialfunktion schreiben lassen.



Lemma  Lemma 26.10 ändern

Es sei eine rationale Funktion in der Exponentialfunktion, d.h. es gebe Polynome , , derart, dass

gilt.

Dann kann man durch die Substitution das Integral auf das Integral einer rationalen Funktion zurückführen.

Bei der Substitution ist

und für die Polynome und ergeben sich

Insgesamt ergibt sich also die rationale Funktion . In deren Stammfunktion muss man dann einsetzen.



Wir wollen eine Stammfunktion für die Funktion

finden. Das in Lemma 26.10 beschriebene Verfahren führt auf die rationale Funktion

sodass die Partialbruchzerlegung direkt vorliegt. Die Stammfunktion von dieser rationalen Funktion ist

Die Stammfunktion von ist daher




Fußnoten
  1. Die Wahl eines geeigneten Definitionsbereichs, um die Aussagen über Stammfunktionen auch in dieser Hinsicht präzise zu machen, überlassen wir dem Leser.
  2. Man kann die Division mit Rest durch ein lineares Polynom sukzessive fortsetzen und erhält ein Polynom in der „neuen Variablen“ . Dies geht nicht mit einem Polynom von höherem Grad.
  3. Manchmal wird eine Stammfunktion zu einer Funktion mit einer neuen Variablen angegeben, um die Rollen von Integrationsvariablen und Variable für die Integrationsgrenzen auseinander zu halten. In einem unbestimmten Integral, wo keine Integrationsgrenzen aufgeführt werden, ist das nicht wichtig. Bei einem Integral der Form ist die Integrationsvariable und die Grenzvariable. Der Ausdruck hängt aber nicht von ab, sondern lediglich von . Deshalb ist (auf beiden Seiten steht eine von abhängige Funktion, und diese stimmen überein) richtig und falsch. Eine Formulierung wie ist eine Stammfunktion von ist aber korrekt.



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF) (PDF englisch)