Mannigfaltigkeit/Partition der Eins/Einführung/Textabschnitt
Es sei eine Mannigfaltigkeit mit einer abzählbaren Basis der Topologie.
Dann besitzt eine kompakte Ausschöpfung.
Zu jedem Punkt gibt es eine offene Kartenumgebung ,
sowie Ballumgebungen
Wegen der Homöomorphie der Kartenabbildung und der Kompaktheit der abgeschlossenen Bälle ist eine kompakte Teilmenge von , die die offene Umgebung von umfasst. Die , , bilden eine offene Überdeckung von , sodass es nach Aufgabe eine abzählbare Teilüberdeckung gibt. Diese sei mit , , bezeichnet (wobei die in den kompakten Teilmengen liegen). Wir definieren nun rekursiv eine monoton wachsende Abbildung
derart, dass
eine kompakte Ausschöpfung von ist. Als endliche Vereinigungen von kompakten Mengen sind diese kompakt. Wir beginnen mit . Es sei schon konstruiert. Die Menge
ist kompakt und wird daher von endlich vielen offenen Mengen überdeckt, wobei wir wählen. Mit dieser Wahl ist
und diese Folge bildet eine Ausschöpfung, da die , , eine offene Überdeckung von bilden.
Die zweite Eigenschaft sichert dabei, dass die Summe in (3) definiert ist, da für jeden Punkt und fast alle die Gleichheit gilt. Bei einer Mannigfaltigkeit nennt man eine solche Partition differenzierbar, wenn alle differenzierbare Funktionen sind.
Es sei ein topologischer Raum. Eine Familie von Funktionen
mit heißt eine Partition der Eins, wenn folgende Eigenschaften gelten.
- Es ist für alle .
- Jeder Punkt besitzt eine offene Umgebung derart, dass die eingeschränkten Funktionen bis auf endlich viele Ausnahmen die Nullfunktion sind.
- Es ist .
Es sei eine offene Überdeckung eines topologischen Raumes . Eine Partition der Eins
mit heißt eine der Überdeckung untergeordnete Partition der Eins, wenn es für jedes eine offene Menge aus der Überdeckung derart gibt, dass der Träger von in liegt.
Es sei eine Mannigfaltigkeit mit einer abzählbaren Basis der Topologie. Es sei eine offene Überdeckung von .
Dann gibt es einen abzählbaren verträglichen Atlas , , mit Ballumgebungen
(dabei ist und ) derart, dass es für jedes ein mit gibt, dass von , , überdeckt wird und dass jeder Punkt nur in endlich vielen der Mengen liegt.
Es sei die offene Überdeckung
, ,
gegeben. Ferner sei
, ,
eine
kompakte Ausschöpfung
von , die es nach
Fakt
gibt. Die offenen Mengen bilden ebenfalls eine offene Überdeckung, da es zu jedem Punkt
ein minimales
mit
(es sei
)
gibt. Für dieses ist
und .
Indem wir die Durchschnitte betrachten, können wir annehmen, dass alle Mengen der Überdeckung innerhalb von einem liegen.
Zu jedem Punkt
gibt es eine offene
(verträgliche)
Kartenumgebung
,
die in einem der liegt und für die es Ballumgebungen
gibt mit und . Diese , , bilden dann ebenfalls eine offene Überdeckung von . Nach Aufgabe können wir zu einer abzählbaren Teilüberdeckung davon übergehen. Wir können also annehmen, dass ein System von Karten , , zusammen mit Ballumgebungen
derart gegeben ist, dass auch
, ,
eine offene Überdeckung von ist, dass jedes in einem liegt und dass die oben beschriebene Beziehung zu der kompakten Ausschöpfung gilt.
Wir werden eine Teilmenge
derart definieren, dass die Familie
, ,
auch noch die Endlichkeitseigenschaft erfüllt. Zu
betrachten wir die kompakte Menge . Diese wird von endlich vielen der
, ,
überdeckt, und zwar braucht man dazu nur Indizes mit der Eigenschaft, dass in liegt. Die zugehörige endliche Indexmenge sei mit bezeichnet, und sei
.
Dann wird jedes nur von endlich vielen der
, ,
getroffen.
Es sei eine differenzierbare Mannigfaltigkeit mit einer abzählbaren Basis der Topologie.
Dann gibt es zu jeder offenen Überdeckung eine der Überdeckung untergeordnete stetig differenzierbare Partition der Eins.
Nach Fakt können wir davon ausgehen, dass eine offene Überdeckung aus Kartengebieten , , ( abzählbar) mit
und mit Ballumgebungen
(mit ) vorliegt derart, dass auch die eine Überdeckung von bilden und dass jeder Punkt nur in endlich vielen der und insbesondere nur in endlich vielen dieser enthalten ist. Auf betrachten wir die Funktion , die durch
definiert ist. Diese Funktion hat genau auf einen positiven Wert und ihr Träger ist . Eine Betrachtung auf den beiden offenen Teilmengen (die überdecken) und zeigt, dass unendlich oft differenzierbar ist. Wir definieren eine Funktion
durch
Diese Funktion ist stetig differenzierbar auf , da der „Streifen“ einen glatten Übergang erlaubt. Wir setzen
wobei dies für jeden Punkt eine endliche Summe ist, da der Träger von in
liegt. Diese Funktion ist stetig differenzierbar auf und überall positiv, da die auf den überdeckenden Mengen positiv sind. Dann bilden die
die gesuchte Partition der Eins.