Kurs:Analysis/Teil I/51/Klausur mit Lösungen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Punkte 3 3 2 8 3 10 5 4 2 7 2 4 2 4 5 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Ein Körper.
  2. Eine Ordnungsrelation auf einer Menge .
  3. Eine Cauchy-Folge in einem angeordneten Körper .
  4. Eine Reihe von komplexen Zahlen .
  5. Die Stetigkeit in einem Punkt einer Abbildung .
  6. Eine untere Treppenfunktion zu einer Funktion

    auf einem Intervall .


Lösung

  1. Eine Menge heißt ein Körper, wenn es zwei Verknüpfungen (genannt Addition und Multiplikation)

    und zwei verschiedene Elemente gibt, die die folgenden Eigenschaften erfüllen.

    1. Axiome der Addition
      1. Assoziativgesetz: Für alle gilt: .
      2. Kommutativgesetz: Für alle gilt .
      3. ist das neutrale Element der Addition, d.h. für alle ist .
      4. Existenz des Negativen: Zu jedem gibt es ein Element mit .
    2. Axiome der Multiplikation
      1. Assoziativgesetz: Für alle gilt: .
      2. Kommutativgesetz: Für alle gilt .
      3. ist das neutrale Element der Multiplikation, d.h. für alle ist .
      4. Existenz des Inversen: Zu jedem mit gibt es ein Element mit .
    3. Distributivgesetz: Für alle gilt .
  2. Die Relation heißt Ordnungsrelation, wenn folgende drei Bedingungen erfüllt sind.
    1. Es ist für alle .
    2. Aus und folgt stets .
    3. Aus und folgt .
  3. Eine Folge in heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist: Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  4. Unter der Reihe versteht man die Folge der Partialsummen
  5. Man sagt, dass stetig im Punkt ist, wenn es zu jedem ein derart gibt, dass für alle mit die Abschätzung gilt.
  6. Eine Treppenfunktion

    heißt eine untere Treppenfunktion zu , wenn für alle ist.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über rationale Zahlen in einem archimedisch angeordneten Körper .
  2. Das Weierstraß-Kriterium für Funktionenfolgen.
  3. Der Satz über die Ableitung in einem lokalen Extremum.


Lösung

  1. Zu je zwei Elementen aus gibt es eine rationale Zahl mit
  2. Es sei eine Menge und sei

    eine Funktionenfolge mit

    Dann konvergiert die Reihe gleichmäßig und punktweise absolut gegen eine Funktion

  3. Es sei offen und sei

    eine Funktion, die in ein lokales Extremum besitze und dort differenzierbar sei. Dann ist


Aufgabe (2 Punkte)

Es stehen zwei Eimer ohne Markierungen zur Verfügung, ferner eine Wasserquelle. Der eine Eimer hat ein Fassungsvermögen von und der andere ein Fassungsvermögen von Litern. Zeige, dass man allein durch Auffüllungen, Ausleerungen und Umschüttungen erreichen kann, dass in einem Eimer genau ein Liter Wasser enthalten ist.


Lösung

Die folgende Kette von Inhaltspaaren kann man bei den gegebenen Möglichkeiten offensichtlich erreichen.


Aufgabe (8 (1+1+1+2+3) Punkte)

Es sei

die Standardparabel und der Kreis mit dem Mittelpunkt und dem Radius .

  1. Skizziere und .
  2. Erstelle eine Gleichung für .
  3. Bestimme die Schnittpunkte
  4. Beschreibe die untere Kreisbogenhälfte als Graph einer Funktion von nach .
  5. Bestimme, wie die Parabel relativ zum unteren Kreisbogen verläuft.


Lösung

  1. Es ist
  2. Es geht um die gemeinsame Lösungsmenge der beiden Gleichungen

    und

    Wir ersetzen in der zweiten Gleichung durch und erhalten die Bedingung

    Also ist oder . Dies führt zu den drei Schnittpunkten .

  3. Die Kreisgleichung

    ist äquivalent zu

    bzw. zu

    Somit ist

    Der untere Kreisbogen ist somit der Graph der Funktion

  4. Wir behaupten, dass die Parabel auf oberhalb des unteren Kreisbogens verläuft. Es ist also

    zu zeigen. Dies ist äquivalent zu

    Da beide Terme im angegebenen Intervall positiv sind, ist dies äquivalent zu

    Dies ist äquivalent zu

    bzw. zu

    was wegen erfüllt ist.


Aufgabe (3 Punkte)

Es sei ein Element in einem angeordneten Körper und sei die Heron-Folge zur Berechnung von mit dem Startwert . Es sei , , und die Heron-Folge zur Berechnung von mit dem Startwert . Zeige

für alle .


Lösung

Wir beweisen die Aussage durch Induktion nach , wobei die Induktionsvoraussetzung direkt durch die Wahl des Startwerts gesichert ist. Es gelte also

Dann ist


Aufgabe (10 Punkte)

Beweise den Satz, dass jede nichtleere nach oben beschränkte Teilmenge der reellen Zahlen ein Supremum besitzt.


Lösung

Es sei eine nichtleere, nach oben beschränkte Teilmenge. Es sei und eine obere Schranke für , d.h. es ist für alle . Wir konstruieren zwei Folgen und , wobei wachsend, fallend ist und jedes eine obere Schranke von ist (sodass insbesondere für alle ist), und so, dass eine Cauchy-Folge ist. Dabei gehen wir induktiv vor, d.h. die beiden Folgen seien bis bereits definiert und erfüllen die gewünschten Eigenschaften. Wir setzen

und

Dieses Punktepaar erfüllt die gewünschten Eigenschaften, und es ist

da in beiden Fällen der Abstand zumindest halbiert wird. Da die Folge wachsend und nach oben beschränkt ist, konvergiert sie nach Korollar 7.1 (Analysis (Osnabrück 2021-2023)) gegen einen Grenzwert, sagen wir . Ebenso ist die fallende Folge nach unten beschränkt und konvergiert gegen denselben Grenzwert .  Wir behaupten, dass dieses das Supremum von ist. Wir zeigen zuerst, dass eine obere Schranke von ist.  Sei dazu für ein angenommen. Da die Folge gegen konvergiert, gibt es insbesondere ein mit

im Widerspruch dazu, dass jedes eine obere Schranke von ist.
 Für die Supremumseigenschaft müssen wir zeigen, dass kleinergleich jeder oberen Schranke von ist. Sei dazu eine obere Schranke von und  nehmen wir an, dass ist. Da gegen konvergiert, gibt es wieder ein mit

im Widerspruch dazu, dass eine obere Schranke ist. Also liegt wirklich das Supremum vor.


Aufgabe (5 (1+1+1+1+1) Punkte)

Beweise die folgenden Aussagen zu Real- und Imaginärteil von komplexen Zahlen.

  1. Es ist .
  2. Es ist .
  3. Es ist .
  4. Für ist
  5. Es ist genau dann, wenn ist, und dies ist genau dann der Fall, wenn ist.


Lösung Es seien im folgendem jeweils z = a + b·i, w = c + d·i mit a,b,c,d aus den komplexen Zahlen. Dann gilt:
1. z = a + bi = Re(z) + Im(z)*i.
2. Re(z + w) = Re(a + bi + c + di) = Re((a + c) + i(b + d)) = a + c = Re(a + bi) + Re(c + di) = Re(z) + Re(w).
3. Im(z + w) = Im(a + bi + c + di) = Im((a + c) + i(b + d)) = b + d = Im(a + bi) + Im(c + di) = Im(z) + Im(w).
4. Sei r aus den reellen Zahlen, dann gilt

 Re(rz) = Re(r(a + bi)) = Re(ra + rbi) = ra = rRe(z) und
Im(rz) = Im(r(a + bi)) = Im(ra + rbi) = rb = rIm(z)

5. Seien A,B,C die drei Aussagen.

  [A => B] Es gelte z = Re(z) => z = Re(a + bi) = a, also z ist reell.
[B => C] Es sei z reell. Dann gilt Im(z) = Im(z + 0·i) = 0.
[C => A] Es sei Im(z) = 0. Dann gilt b = 0 also z = a = Re(z).


Aufgabe (4 Punkte)

Es sei ein Körper und sei der Polynomring über . Es sei mit . Zeige, dass sämtliche normierten Teiler von die Form , , besitzen.


Lösung

Die angegeben Potenzen sind offenbar Teiler von . Die Umkehrung beweisen wir durch Induktion über . Als Teiler kommen nur Polynome in Frage, deren Grad kleiner/gleich ist. Sei . Eine Faktorzerlegung in normierte Polynome muss die Form

haben, was erzwingt. Es sei nun beliebig und eine Faktorzerlegung

in normierte Polynome vorgegeben. Da eine Nullstelle links ist, muss oder sein. Sagen wir der erste Fall liegt vor. Nach Lemma 11.6 (Analysis (Osnabrück 2021-2023)) ist ein Teiler von und somit ist

Da nullteilerfrei ist, folgt

und die Aussage folgt aus der Induktionsvoraussetzung.


Aufgabe (2 Punkte)

Setze in das Polynom die Zahl ein.


Lösung

Es ist


Aufgabe (7 Punkte)

Beweise den Satz über die Stetigkeit der Umkehrfunktion zu einer streng wachsenden, stetigen Funktion , zu einem Intervall .


Lösung

Dass das Bild wieder ein Intervall ist folgt aus Korollar 13.5 (Analysis (Osnabrück 2021-2023)).
Die Funktion ist injektiv, da sie streng wachsend ist und damit ist die Abbildung

auf das Bild bijektiv.
Die Umkehrfunktion

ist ebenfalls streng wachsend.
Sei und vorgegeben. Es sei zunächst kein Randpunkt von . Dann ist auch kein Randpunkt von . Sei vorgegeben und ohne Einschränkung angenommen. Dann ist

und für gilt wegen der Monotonie

Also ist stetig in . Wenn ein Randpunkt von ist, so ist auch ein Randpunkt von , sagen wir der rechte Randpunkt. Dann ist zu vorgegebenem wieder und erfüllt die geforderte Eigenschaft.


Aufgabe (2 Punkte)

Gibt es eine reelle Zahl, die in ihrer dritten Potenz, vermindert um das Vierfache ihrer zweiten Potenz, gleich der Quadratwurzel von ist?


Lösung

Es geht um eine reelle Lösung für die Gleichung

Es ist und und . Da als Polynomfunktion stetig ist, gibt es nach dem Zwischenwertsatz ein mit .


Aufgabe (4 Punkte)

Ordne die Zahlen

gemäß ihrer Größe.


Lösung

Es ist einerseits

Andererseits ist

wobei wir im dritten Schritt die geometrische Reihe verwendet haben. Daher ist


Aufgabe (2 Punkte)

Es sei eine differenzierbare Funktion. Bestimme die Ableitung der Funktion


Lösung

Es ist


Aufgabe (4 (1+3) Punkte)

Wir betrachten die Funktion

  1. Beschreibe den Flächeninhalt zur unteren maximalen Treppenfunktion zu zur Intervallunterteilung in Abhängigkeit von .
  2. Bestimme dasjenige zwischen und , für das der Flächeninhalt zur unteren maximalen Treppenfunktion zu zur Intervallunterteilung maximal wird. Welchen Wert hat dieser Flächeninhalt?


Lösung

  1. Da streng fallend ist, besitzt die maximale untere Treppenfunktion auf jedem Teilintervall den Wert von an der oberen Intervallgrenze. Der Flächeninhalt der maximalen unteren Treppenfunktion ist also
  2. Es ist

    Dies ist genau dann gleich , wenn

    also

    ist. Da die zweite Ableitung negativ ist, liegt in diesem Punkt ein lokales isoliertes Maximum mit dem Wert

    vor, das auch global ist, da an den Grenzen der Wert ist.


Aufgabe (5 Punkte)

Eine Kettenlinie (eine durchhängende Kette) wird durch die gewöhnliche Differentialgleichung

beschrieben (). Finde die Lösung, wenn ist.


Lösung

Wir setzen

diese Funktion erfüllt dann die Differentialgleichung

erster Ordnung. Das ist eine „zeitunabhängige“ Differentialgleichung. Eine Stammfunktion von findet man (siehe Lemma 27.8 (Analysis (Osnabrück 2021-2023))) mit der Substitution

es ist

eine Stammfunktion ist also . Die Lösungen der Differentialgleichung für sind also

Daher sind die Lösungen für die ursprüngliche Gleichung gleich

Da die Anfangsbedingung symmetrisch zur -Achse ist, muss

sein. Die Bedingung

liefert

Also ist

die Lösung.