Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 50
- Übungsaufgaben
Wenn in den folgenden Aufgaben nach Extrema gefragt wird, so ist damit gemeint, dass man die Funktionen auf (isolierte) lokale und globale Extrema untersuchen soll. Zugleich soll man, im differenzierbaren Fall, die kritischen Punkte bestimmen.
Bestimme die kritischen Punkte der Funktion
und entscheide, ob in diesen kritischen Punkten ein lokales Extremum vorliegt.
Wir betrachten die Abbildung
(es ist also ).
a) Berechne die partiellen Ableitungen von und stelle den Gradienten zu auf.
b) Bestimme die isolierten lokalen Extrema von .
Es sei
eine zweimal stetig differenzierbare Funktion und ein kritischer Punkt. Es sei ein Eigenvektor zur Hesse-Matrix in mit einem positiven Eigenwert. Zeige, dass in kein lokales Maximum besitzt.
Es sei
eine stetig differenzierbare Funktion mit
für alle .
a) Zeige, dass in einen kritischen Punkt besitzt.
b) Man gebe ein Beispiel für eine solche Funktion, die in ein isoliertes lokales Maximum besitzt.
c) Man gebe ein Beispiel für eine solche Funktion, die in kein Extremum besitzt.
Bestimme die lokalen und globalen Extrema der auf der abgeschlossenen Kreisscheibe definierten Funktion
Wir betrachten die Funktion
Für welches besitzt die zugehörige zweistufige (maximale) untere Treppenfunktion zu den maximalen Flächeninhalt? Welchen Wert besitzt er?
Wir betrachten die Funktion
Für welche , , besitzt die zugehörige dreistufige (maximale) untere Treppenfunktion zu den maximalen Flächeninhalt? Welchen Wert besitzt er?
Es sei ein endlichdimensionaler reeller Vektorraum, offen, und . Man gebe ein Beispiel von zwei zweimal stetig differenzierbaren Funktionen
an derart, dass ihre quadratischen Approximationen in übereinstimmen, und die eine Funktion ein Extremum in besitzt, die andere nicht.
Es sei ein endlichdimensionaler reeller Vektorraum, , offen, und . Man gebe ein Beispiel von zwei zweimal stetig differenzierbaren Funktionen
an derart, dass ihre quadratischen Approximationen in übereinstimmen, und die eine Funktion ein Extremum in besitzt, die andere nicht.
- Aufgaben zum Abgeben
Aufgabe (5 Punkte)
Wir betrachten die Funktion
Für welche , , besitzt die zugehörige dreistufige (maximale) untere Treppenfunktion zu den maximalen Flächeninhalt? Welchen Wert besitzt er?
Aufgabe (5 Punkte)
Sei
eine Funktion und betrachte
Zeige, dass allenfalls im Nullpunkt ein isoliertes lokales Extremum besitzen kann, und dass dies genau dann der Fall ist, wenn in ein isoliertes lokales Extremum besitzt.
Aufgabe (5 Punkte)
Es sei
eine stetige Funktion und es sei ein isolierter Punkt, d.h. es gebe eine offene Umgebung derart, dass ist für alle , . Zeige, dass dann in ein isoliertes lokales Extremum besitzt.
<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >> |
---|