Kurs:Mathematik (Osnabrück 2009-2011)/Teil I/Vorlesung 24
- Reihen
Wir betrachten Reihen von komplexen Zahlen.
Es sei eine Folge von komplexen Zahlen. Unter der Reihe versteht man die Folge der Partialsummen
Falls die Folge konvergiert, so sagt man, dass die Reihe konvergiert. In diesem Fall schreibt man für den Grenzwert ebenfalls
und nennt ihn die Summe der Reihe.
Alle Begriffe für Folgen übertragen sich auf Reihen, indem man eine Reihe als Folge der Partialsummen auffasst. Wie schon bei Folgen kann es sein, dass die Summation nicht bei , sondern bei einer anderen Zahl beginnt.
Es sei
eine Reihe von komplexen Zahlen.
Dann ist die Reihe genau dann konvergent, wenn das folgende Cauchy-Kriterium erfüllt ist: Zu jedem gibt es ein derart, dass für alle die Abschätzung
gilt.
Beweis
Es seien
konvergente Reihen von komplexen Zahlen mit den Summen und . Dann gelten folgende Aussagen.
- Die Reihe mit ist ebenfalls konvergent mit der Summe .
- Für ist auch die Reihe mit konvergent mit der Summe .
Beweis
Dies folgt direkt aus Lemma 24.2.
Die harmonische Reihe ist die Reihe
Diese Reihe divergiert: Für die Zahlen ist
Daher ist
Damit ist die Folge der Partialsummen unbeschränkt und kann nach Fakt ***** nicht konvergent sein.
Es sei eine fallende Nullfolge von nichtnegativen reellen Zahlen.
Dann konvergiert die Reihe .
Wir setzen
Wir betrachten die Teilfolge mit geradem Index. Für jedes gilt wegen die Beziehung
d.h. diese Teilfolge ist fallend. Ebenso ist die Folge der ungeraden Teilsummen wachsend. Es gelten die Abschätzungen
Daher sind die beiden Teilfolgen fallend und nach unten beschränkt bzw. wachsend und nach oben beschränkt, und daher wegen Korollar 8.10 konvergent. Wegen und stimmen die Grenzwerte überein.
- Absolute Konvergenz
Eine absolut konvergente Reihe von komplexen Zahlen
Es sei vorgegeben. Wir wenden das Cauchy-Kriterium an. Aufgrund der absoluten Konvergenz gibt es ein derart, dass für alle die Abschätzung
gilt. Daher ist
was die Konvergenz bedeutet.
Eine konvergente Reihe muss nicht absolut konvergieren, d.h. Satz 24.8 lässt sich nicht umkehren. Aufgrund des Leibnizkriteriums konvergiert die alternierende harmonische Reihe
und zwar ist ihr Grenzwert , was wir hier aber nicht beweisen. Die zugehörige absolute Reihe ist aber die harmonische Reihe, die nach Beispiel 24.5 divergiert.
Es sei eine konvergente Reihe von reellen Zahlen und eine Folge komplexer Zahlen mit für alle .
Dann ist die Reihe
Das folgt direkt aus dem Cauchy-Kriterium.
- Die geometrische Reihe und das Quotientenkriterium
Die Reihe heißt geometrische Reihe zu , es geht also um die Summe
Die Konvergenz hängt wesentlich vom Betrag von ab.
Für alle komplexen Zahlen mit konvergiert die Reihe absolut und es gilt
Für jedes gilt die Beziehung
und daher gilt für die Partialsummen die Beziehung (bei )
Für und konvergiert dies wegen Aufgabe 19.9 und Fakt ***** gegen .
Es sei
eine Reihe von komplexen Zahlen. Es gebe eine reelle Zahl mit und ein mit
für alle (Insbesondere sei für ).
Dann konvergiert die Reihe absolut.
Die Konvergenz[1] ändert sich nicht, wenn man endlich viele Glieder ändert. Daher können wir annehmen. Ferner können wir annehmen, dass alle nichtnegative reelle Zahlen sind. Es ist
Somit folgt die Konvergenz aus dem Majorantenkriterium und der Konvergenz der geometrischen Reihe.
- Summierbarkeit
Bei einer Reihe sind die aufzusummierenden Glieder durch die natürlichen Zahlen geordnet. Häufig kommt es vor, dass diese Ordnung verändert wird. Dabei kann sich sowohl die Summe als auch die Eigenschaft, ob eine konvergente Reihe vorliegt, ändern, allerdings nicht, wenn die Reihe absolut konvergent ist, siehe Aufgabe 24.8 und Aufgabe *****. Wenn man sich für die Summe der Kehrwerte aller Primzahlen interessiert, so ist es natürlicher, dies direkt als die Summe aufzufassen, anstatt die Primzahlen durchzunummerieren, um eine durch die natürlichen Zahlen indizierte Reihe zu haben. Wenn man zwei absolut konvergente Reihen und multiplizieren möchte, so geht es nach der Regel, jeden Summanden mit jedem Summanden zu multiplizieren, um die Summe aller Einzelprodukte , , wobei eben die natürliche Indexmenge ist, für die es keine naheliegende Ordung gibt. In der Definition von Cauchy-Produkt werden die Produkte mit konstanter Indexsumme zusammengefasst, um eine Summationsreihenfolge festzulegen, es gibt aber auch noch viele andere Möglichkeiten. Vor diesem Hintergrund ist es sinnvoll, einen Summationsbegriff zu besitzen, der unabhängig von jeder Ordnung der Indexmenge ist. Wir werden diese Theorie nicht systematisch entwickeln, sondern nur den großen Umordnungssatz beweisen, den wir bald für das Entwickeln einer Potenzreihen in einem neuen Entwicklungspunkt benötigen. Die Familie sei als , , gegeben. Für jede endliche Teilmenge kann man die zugehörigen Glieder aufsummieren, und wir setzen
Eine sinnvolle Aufsummierung der gesamten Familie muss auf diese endlichen Teilsummen Bezug nehmen.
Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Diese Familie heißt summierbar, wenn es ein mit folgender Eigenschaft gibt: Zu jedem gibt es eine endliche Teilmenge derart, dass für alle endlichen Teilmengen mit die Beziehung
gilt. Dabei ist . Im summierbaren Fall heißt die Summe der Familie.
Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Diese Familie heißt eine Cauchy-Familie, wenn es zu jedem eine endliche Teilmenge derart gibt, dass für jede endliche Teilmenge mit die Beziehung
gilt. Dabei ist .
Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen.
Dann ist die Familie genau dann summierbar, wenn sie eine Cauchy-Familie ist.
Es sei zunächst die Familie summierbar mit der Summe , und sei vorgegeben. Zu gibt es eine endliche Teilmenge derart, dass für alle endlichen Mengen mit die Abschätzung gilt. Für jede zu disjunkte endliche Teilmenge gilt dann
sodass die Cauchy-Bedingung erfüllt ist.
Es sei nun
, ,
eine
Cauchy-Familie.
Wir brauchen zunächst einen Kandidaten für die Summe. Für jedes
gibt es eine endliche Teilmenge
derart, dass für jede endliche Teilmenge
mit
die Abschätzung
gilt. Wir können annehmen, dass
für alle gilt. Wir setzen
Für gilt
da die Menge disjunkt zu ist. Daher ist eine
Cauchy-Folge
und somit wegen der
Vollständigkeit
von
konvergent
gegen ein
.
Wir behaupten, dass die Familie summierbar ist mit der Summe . Es sei dazu ein
vorgegeben. Es gibt
mit
.
Dann ist wegen der Folgenkonvergenz und der Abschätzung von eben
.
Für jedes endliche
schreiben wir
mit .
Damit gelten die Abschätzungen
Es sei , , eine summierbare Familie komplexer Zahlen und eine Teilmenge.
Dann ist auch , , summierbar.
Beweis
- Fußnoten
- ↑ Wohl aber die Summe.
<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil I | >> |
---|