Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Arbeitsblatt 8/kontrolle



Die Pausenaufgabe

Bestimme die Dimension des Raumes der -Matrizen.




Übungsaufgaben

Bestimme die Dimension des Lösungsraumes des linearen Gleichungssystems

in den Variablen .



Bestimme die Dimension des Raumes aller - Matrizen.



Es sei ein Körper und . Zeige, dass die Menge der Diagonalmatrizen ein Untervektorraum im Raum aller - Matrizen über ist und bestimme seine Dimension.


Eine - Matrix

heißt symmetrisch, wenn für alle ist.



Zeige, dass die Menge der symmetrischen - Matrizen einen Untervektorraum im Raum aller -Matrizen bildet und bestimme dessen Dimension.



Es sei ein Körper und . Zeige, dass die Menge der oberen Dreiecksmatrizen ein Untervektorraum im Raum aller - Matrizen über ist und bestimme seine Dimension.



Aufgabe * Aufgabe 8.7 ändern

Es sei ein Körper und ein - Vektorraum mit endlicher Dimension

Es seien Vektoren in gegeben. Zeige, dass die folgenden Eigenschaften äquivalent sind.

  1. bilden eine Basis von .
  2. bilden ein Erzeugendensystem von .
  3. sind linear unabhängig.



Es sei ein Körper und ein - Vektorraum mit endlicher Dimension. Es sei ein Untervektorraum mit . Zeige, dass dann ist.



Es seien reelle Zahlen. Wir betrachten die drei Vektoren

Man gebe Beispiele für derart, dass der von diesen Vektoren erzeugte Untervektorraum die Dimension besitzt.



Es sei ein Körper und es seien und endlichdimensionale - Vektorräume mit und . Welche Dimension besitzt der Produktraum ?



Es sei ein -dimensionaler - Vektorraum ( ein Körper) und seien Untervektorräume der Dimension und . Es gelte . Zeige, dass ist.



Es sei ein Körper und sei der Polynomring über . Es sei . Zeige, dass die Menge aller Polynome vom Grad ein endlichdimensionaler Untervektorraum von ist. Was ist seine Dimension?



Zeige, dass die Menge aller reellen Polynome vom Grad , für die und Nullstellen sind, ein endlichdimensionaler Untervektorraum in ist. Bestimme die Dimension von diesem Vektorraum.



Es sei ein endlichdimensionaler Vektorraum über den komplexen Zahlen, und sei eine Basis von . Zeige, dass die Vektorenfamilie

eine Basis von , aufgefasst als reeller Vektorraum, ist.



Es sei die Standardbasis im gegeben und die drei Vektoren

Zeige, dass diese Vektoren linear unabhängig sind und ergänze sie mit einem geeigneten Standardvektor gemäß Satz 8.2 zu einer Basis. Kann man jeden Standardvektor nehmen?



Aufgabe Aufgabe 8.16 ändern

Es sei ein Körper und ein - Vektorraum. Zeige, dass nicht zugleich eine endliche Basis und eine unendliche Basis besitzen kann.


Das magische Quadrat aus Dürers Stich Melencolia I.


Eine - Matrix über einem Körper heißt magisches Quadrat (oder linear-magisches Quadrat über ), wenn jede Spaltensumme und jede Zeilensumme in der Matrix gleich einer bestimmen Zahl ist.


In diesem Sinne ist

für jedes ein magisches Quadrat.


Zeige, dass die Menge aller linear-magischen Quadrate der Länge über einen Untervektorraum im Raum aller - Matrizen bildet.




Aufgaben zum Abgeben

Es sei ein Körper und ein - Vektorraum. Es sei eine Familie von Vektoren in und sei

der davon aufgespannte Untervektorraum. Zeige, dass die Familie genau dann linear unabhängig ist, wenn die Dimension von gleich ist.




a) Bestimme die Dimension des Lösungsraumes des linearen Gleichungssystems

in den Variablen .


b) Was ist die Dimension des Lösungsraumes, wenn man dieses System in den Variablen auffasst?



Zeige, dass die Menge aller reellen Polynome vom Grad , für die , und Nullstellen sind, ein endlichdimensionaler Untervektorraum in ist. Bestimme die Dimension von diesem Vektorraum.



Es sei ein Körper und . Bestimme die Dimension des Raumes aller linear-magischen Quadrate der Länge über .


<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)