Kurs:Mathematik (Osnabrück 2009-2011)/Teil III/Arbeitsblatt 63/kontrolle



Aufwärmaufgaben

Es sei ein metrischer Raum. Zeige, dass in die sogenannte Hausdorff-Eigenschaft gilt, d.h. zu je zwei verschiedenen Punkten und gibt es offene Mengen und mit



Zeige, dass in einem Hausdorff-Raum jeder Punkt abgeschlossen ist.



Es sei ein topologischer Raum mit einer abzählbaren Basis. Zeige, dass dann auch jeder Unterraum mit der induzierten Topologie eine abzählbare Basis besitzt.



Aufgabe Aufgabe 63.4 ändern

Es sei ein topologischer Raum mit einer abzählbaren Basis. Zeige, dass es zu jeder Überdeckung mit offenen Mengen eine abzählbare Teilüberdeckung gibt.



Es sei ein Maßraum. Zeige, dass die Mengen

einen Mengen-Präring, aber im Allgemeinen keine Mengen-Algebra bilden.



Es sei ein Maßraum und . Zeige, dass durch

ein Maß auf definiert ist.[1] Diskutiere insbesondere die Teilmengen mit .



Es sei ein Messraum. Wir nennen ein Maß auf explosiv, wenn es lediglich die Werte und annimmt.

a) Zeige, dass (für ) durch

ein Maß definiert ist.

b) Es sei ein Maß auf . Zeige, dass durch

ebenfalls ein Maß definiert ist.




Aufgaben zum Abgeben

Es sei ein Messraum und sei

eine Folge von messbaren Funktionen. Zeige, dass

messbar ist.



Aufgabe (3 Punkte)Aufgabe 63.9 ändern

Zeige, dass es eine abzählbare Familie von offenen Bällen im gibt, die eine Basis der Topologie bilden.



Es sei ein Hausdorff-Raum und es seien zwei disjunkte endliche Teilmengen. Zeige, dass es offene Mengen mit , und mit gibt.



Zeige, dass es auf jedem endlichdimensionalen reellen Vektorraum ein wohldefiniertes Konzept von Borel-Mengen gibt.



Zeige, dass die Menge der stetigen wachsenden Funktionen

mit , mit und überabzählbar ist.



Fußnoten
  1. Dieses Maß nennt man das mit umskalierte Maß.


<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil III | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)