Kurs:Zahlentheorie (Osnabrück 2008)/Vorlesung 20


Ein quadratischer Zahlbereich ist der Ring der ganzen Zahlen in einem Erweiterungskörper von vom Grad .

Quadratische Zahlbereiche sind zwar die einfachsten Zahlbereiche, sind aber keinwegs einfach, sondern zeigen bereits die Reichhaltigkeit der algebraischen Zahlentheorie.

Wir interessieren uns in der algebraischen Zahlentheorie insbesondere für folgende Fragen.

  1. Wann ist ein Zahlbereich ein Hauptidealbereich und wann ist er faktoriell?
  2. Wenn kein Hauptidealbereich ist, gibt es dann andere Versionen, die die eindeutige Primfaktorzerlegung ersetzen (Ja: Lokal und auf Idealebene).
  3. Wenn kein Hauptidealbereich ist, kann man dann die Abweichung von der Eigenschaft, ein Hauptidealbereich zu sein, in irgendeiner Form messen? (Ja: Durch die sogenannte Klassengruppe).



Eine ganze Zahl heißt quadratfrei, wenn jeder Primfaktor von ihr nur mit einem einfachen Exponenten vorkommt.

Zu einer quadratfreien Zahl bezeichnet man den zugehörigen quadratischen Zahlbereich, also den Ring der ganzen Zahlen in , mit


Eine quadratischen Körpererweiterungen der rationalen Zahlen wird beschrieben durch ein normiertes irreduzibles Polynom, das man durch quadratisches Ergänzen auf die Form bringen kann. Durch Multiplikation mit einem Quadrat (siehe Aufgabe 12.8) kann man durch eine quadratfreie ganze Zahl ersetzen. Ein großer Unterschied besteht je nachdem, ob positiv oder negativ ist. Im positiven Fall ist eine reelle irrationale Zahl, im negativen Fall handelt es sich um eine imaginäre Zahl. Man definiert:


Es sei quadratfrei und sei der zugehörige quadratische Zahlbereich. Dann heißt reell-quadratisch, wenn positiv ist, und imaginär-quadratisch, wenn negativ ist.


Es sei eine quadratfreie Zahl und sei die zugehörige quadratische Körpererweiterung und der zugehörige quadratische Zahlbereich. Dann wird der Automorphismus (auf , auf und auf )

als Konjugation bezeichnet.

Wir bezeichnen die Konjugation von mit .

Im imaginär-quadratischen Fall, wenn also ist, so ist mit reell. Die Konjugation schickt dies dann auf , sodass diese Konjugation mit der komplexen Konjugation übereinstimmt. Im reell-quadratischen Fall allerdings hat die Konjugation nichts mit der komplexen Konjugation zu tun.


Bei einer endlichen Körpererweiterung werden Norm und Spur eines Elementes über die Determinante und die Spur der Multiplikationsabbildung definiert. Im Fall einer quadratischen Erweiterung

sind diese beiden Invarianten einfach zu berechnen: Da und eine -Basis bilden, ist und damit ist die Multiplikationsmatrix durch

gegeben. Somit ist

und




Es sei eine quadratische Körpererweiterung und . Dann ist genau dann ganz über , wenn sowohl die Norm als auch die Spur von zu gehören.

Dies folgt aus Satz 18.4, aus Satz 15.15, und aus der Gestalt des Minimalpolynoms (nämlich gleich , falls ) im quadratischen Fall.



Es sei eine quadratfreie Zahl und der zugehörige quadratische Zahlbereich. Dann gilt

und

Sei gegeben, , . Aus Lemma 20.8 folgt

Aus der zweiten Gleichung folgt, dass mit ist. Sei mit teilerfremd, . Die erste Gleichung wird dann zu bzw. . Dies bedeutet, da und teilerfremd sind, dass von geteilt wird. Da ferner quadratfrei ist, folgt, dass oder ist. Im ersten Fall ist ein Vielfaches von (da ein Vielfaches von ist), sodass ist.

Es sei also , was zur Bedingung

führt. Wir betrachten diese Gleichung modulo . Bei und gerade ist . Die einzigen Quadrate in sind und , sodass für keine weitere Lösung existiert. Für hingegen gibt es auch noch die Lösung und , also und beide ungerade. Diese Lösungen gehören alle zu .

Die umgekehrte Inklusion ist klar, sei also . Dann ist aber

und dabei ist eine ganze Zahl, sodass dies sofort eine Ganzheitsgleichung über ergibt.


In den im vorstehenden Satz beschriebenen Fällen kann man jeweils den Ring der ganzen Zahlen durch eine Gleichung beschreiben. Für ist

Für setzt man häufig für den Algebra-Erzeuger. Dieser Erzeuger erfüllt . Wir haben also

Wie werden häufiger in beiden Fällen diese Ganzheitsbasis nennen, mit im ersten Fall und im zweiten Fall.



Es sei eine quadratfreie Zahl und der zugehörige quadratische Zahlbereich. Dann ist die Diskriminante von gleich

und

Im Fall ist nach Satz 20.9 und daher bilden und eine Ganzheitsbasis. Die möglichen Produkte zu dieser Basis sind in Matrixschreibweise

Wendet man darauf komponentenweise die Spur an so erhält man

und die Determinante davon ist .

Im Fall ist hingegen

und eine Ganzheitsbasis ist und . Die Matrix der Basisprodukte ist dann

Wendet man darauf die Spur an (die Spur von ist ), so erhält man

und die Determinante davon ist


Das Verhalten von Primzahlen in einer quadratischen Erweiterung lässt sich aus der oben erzielten Beschreibung mit Gleichungen erhalten.

Generell wird bei das Verhalten von in durch beschrieben, wobei bedeutet, dass die ganzzahligen Koeffizienten durch ihre Restklasse modulo ersetzt werden. Wir nennen den Ring

den Faserring über .

Bei hat man einfach

wobei man durch ersetzen kann. Die prinzipiellen Möglichkeiten werden in Lemma 19.9 beschrieben. Ob über ein oder zwei Primideale liegen hängt davon ab, ob ein Quadratrest modulo ist und ob ungerade ist, und ist prim genau dann, wenn kein Quadratrest modulo ist.

Bei hat man

Ist ungerade, so ist eine Einheit in und man kann quadratisch ergänzen. Dann ist

Der Faserring hat daher die Form und nach Multiplikation der Gleichung mit der Einheit kann man dies als schreiben, sodass es wieder darum geht, ob ein Quadratrest modulo ist.

Ist hingegen , so schreibt sich die Gleichung als , wobei ist, wenn ist, und , wenn . Im ersten Fall ist die Gleichung irreduzibel über und ist prim in , im zweiten Fall ist die Gleichung reduzibel und zerfällt in zwei Primideale.


Damit können wir entscheiden, wie viele Primideale in über einer Primzahl liegen. Wir wollen darüber hinaus genau beschreiben, wie das Zerlegungsverhalten einer Primzahl in einer quadratischen Erweiterung aussieht, und beginnen mit der Situation, wo die Diskriminante teilt.



Es sei eine quadratfreie Zahl und der zugehörige quadratische Zahlbereich. Die Primzahl sei ein Teiler der Diskriminante von . Dann gibt es oberhalb von genau ein Primideal und es ist .

Es sei zunächst , sodass nach Lemma 20.10 ist und als Primteiler der Diskriminante und die Teiler von in Frage kommen. Es ist

Bei steht hier und dieser Ring hat das einzige Primideal mit . Diesem Primideal entspricht in das Primideal . Es ist . Einerseits gilt für im Faserring modulo die Beziehung , woraus folgt. Andererseits ist (in ) mit . Da quadratfrei ist, ist teilerfremd zu und daher kann man mit schreiben

Bei gilt in die Beziehung , sodass eine analoge Situation vorliegt.

Es sei jetzt und sei ein Primteiler von . Es ist

Da ungerade ist, ist eine Einheit in , sodass man die Gleichung modulo als

schreiben kann, sodass wieder eine analoge Situation vorliegt.


Zu einem Ideal bezeichnet das konjugierte Ideal, das aus allen konjugierten Elementen aus besteht.



Es sei eine quadratfreie Zahl und der zugehörige quadratische Zahlbereich.

Dann gibt es für eine Primzahl die folgenden drei Möglichkeiten:

  1. ist prim in .
  2. Es gibt ein Primideal in derart, dass ist.
  3. Es gibt ein Primideal in derart, dass mit ist.

Es sei . Wir betrachten den Restklassenring , der eine quadratische Erweiterung des Körpers ist. Damit gibt es nach Lemma 19.9 die drei Möglichkeiten:

  1. ist ein Körper.
  2. ist von der Form .
  3. ist der Produktring .

Im ersten Fall ist ein Primelement in . Im zweiten Fall besitzt genau einen Restklassenkörper als einzigen nicht-trivialen Restklassenring, nämlich . Nach der in Aufgabe 16.10 bewiesenen Korrespondenz gibt es also genau ein Primideal mit (das dem Ideal im Restklassenring entspricht). Dann ist (wobei hier ein Repräsentant in sei) und .

Im dritten Fall besitzt zwei Restklassenkörper und damit zwei maximale Ideale, deren Durchschnitt, das zugleich deren Produkt ist, das Nullideal ist. Zurückübersetzt nach heißt das, dass es zwei verschiedene Primideale und gibt mit und mit . Nach Aufgabe 18.8 ist . Mit ist auch . Wir zeigen, dass ist, d.h., dass die beiden Primideale über konjugiert vorliegen. Da nach Lemma 20.12 bei der zweite Fall vorliegt, wissen wir, dass die Diskriminate nicht teilt.

Bei ist ungerade und ist ein Quadratrest modulo . Es seien und die beiden verschiedenen (!) Quadratwurzeln modulo . Dann werden die beiden Primideale durch beschrieben, und diese sind konjugiert.

Bei und ungerade ist nach der Bemerkung 20.11 über die explizite Beschreibung der Faserringe wieder ein Quadratrest modulo . Es seien und die beiden verschiedenen (!) Quadratwurzeln von modulo . Dann ist und daher sind die beiden Primideale gleich , sodass wieder ein konjugiertes Paar vorliegt.

Bei und ist nach der Fakt . Die Nullstellen des beschreibenden Polynoms sind dann und . Daher sind die Primideale darüber gegeben durch und . Es ist und , sodass wieder ein konjugiertes Paar vorliegt.



<< | Kurs:Zahlentheorie (Osnabrück 2008) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)