Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 35



Übungsaufgaben



Es sei eine Teilmenge in einem metrischen Raum . Zeige für den Abschluss von die Gleichheit



Bestimme den Abschluss von in



Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es sei

eine Abbildung in einen euklidischen Vektorraum mit den Komponentenfunktionen

bezüglich einer Basis von . Zeige, dass der Limes

genau dann existiert, wenn sämtliche Limiten

existieren.



Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es seien und Funktionen derart, dass die Grenzwerte und existieren. Zeige, dass die folgenden Beziehungen gelten.

  1. Die Summe besitzt einen Grenzwert in , und zwar ist
  2. Das Produkt besitzt einen Grenzwert in , und zwar ist
  3. Es sei für alle und . Dann besitzt der Quotient einen Grenzwert in , und zwar ist



Es sei eine Teilmenge eines metrischen Raumes, ein Berührpunkt von ,

eine Abbildung in einen weiteren metrischen Raum und . Zeige, dass für den Limes

genau dann gilt, wenn

gilt.



Die nächsten Aufgaben verwenden den folgenden Begriff.


Es sei ein metrischer Raum und eine Teilmenge. Ein Punkt heißt Randpunkt von , wenn für jedes der offene Ball

sowohl Punkte aus als auch Punkte aus enthält.

Die Menge aller Randpunkte von heißt Rand von , geschrieben .



Es sei ein metrischer Raum und eine Teilmenge. Zeige, dass der Rand von gleich dem Durchschnitt von und ist.



Es sei ein metrischer Raum und eine Teilmenge. Zeige, dass der Rand von abgeschlossen ist.



Es sei ein metrischer Raum und eine Teilmenge. Zeige, dass die Menge

abgeschlossen ist.



Es sei ein metrischer Raum und eine Teilmenge. Zeige, dass die Menge

offen ist.



Es sei ein metrischer Raum und eine Teilmenge. Zeige, dass genau dann abgeschlossen ist, wenn die Inklusion gilt.



Es sei ein nichtleeres reelles Intervall und ein Punkt. Bestimme die Teilmengen von , die sowohl offen als auch abgeschlossen sind.





Zeige, dass der wegzusammenhängend ist.



Es sei eine offene (oder abgeschlossene) Kugel im . Zeige, dass wegzusammenhängend ist.



Es sei und ein Punkt. Zeige, dass wegzusammenhängend ist.



Zeige, dass ein reelles Intervall wegzusammenhängend.



Untersuche den Graphen der durch

gegebenen Funktion auf Zusammenhangseigenschaften.



Zeige, dass in der nichtleere Durchschnitt von zusammenhängenden Teilmengen wieder zusammenhängend ist. Muss dies auch für den nichtleeren Durchschnitt von zusammenhängenden Teilmengen im gelten?



Es sei ein metrischer Raum und sei mit nichtleeren Teilmengen und . Es gebe ein mit

Zeige, dass (und auch ) sowohl offen als auch abgeschlossen ist.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Es sei ein metrischer Raum und eine Teilmenge. Zeige, dass der Rand von genau dann leer ist, wenn sowohl offen als auch abgeschlossen ist.



Aufgabe (4 Punkte)

Es sei ein metrischer Raum und eine Teilmenge. Es sei zusammenhängend. Zeige, dass auch der Abschluss zusammenhängend ist.



Aufgabe (3 Punkte)

Man gebe ein Beispiel für eine offene, nicht zusammenhängende Teilmenge mit der Eigenschaft, dass der Abschluss von zusammenhängend ist.



Aufgabe (5 Punkte)

Bestimme den Abschluss der Menge in .



Aufgabe (4 Punkte)

Es seien , , und sei

der Kreis mit dem Mittelpunkt und dem Radius . Es sei eine Gerade in mit der Eigenschaft, dass es auf mindestens einen Punkt gibt mit . Zeige, dass ist.



<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)