Kurs:Einführung in die Algebra (Osnabrück 2009)/Vorlesung 10
- Bewegungen
Wir haben schon mehrfach die Würfelgruppe betrachtet, also die Gruppe der eigentlichen Symmetrien an einem Würfel. Jede dieser Symmetrien ist insbesondere eine abstandserhaltende lineare Abbildung des umgebenden Raumes um eine eindeutig bestimmte Drehachse. Die Gesamtmenge der abstandserhaltenden linearen (eigentlichen) Abbildungen des Raumes bildet die sogenannte orthogonale Gruppe (bzw. ). Dies ist natürlich eine sehr große, unendliche Gruppe. Interessant ist aber, dass die endlichen Untergruppen darin übersichtlich beschrieben werden können. Diese endlichen Untergruppen lassen sich stets als Symmetriegruppe zu einem geeigneten geometrischen Objekt auffassen. Dass eine einfache Klassifikation dieser endlichen Bewegungsgruppen möglich ist, beruht auf intrinsischen Struktureigenschaften des Raumes und liefert unter Anderem eine präzise Version dafür, dass es nur fünf reguläre Polyeder (die platonischen Körper) gibt.
Für die folgenden Überlegungen benötigen wir etwas lineare Algebra, insbesondere den Begriff des euklidischen Vektorraumes, siehe
hier.
Eine lineare Abbildung
auf einem euklidischen Vektorraum heißt Isometrie, wenn für alle die Gleichheit
gilt.
Eine Isometrie auf einem euklidischen Vektorraum heißt eigentlich, wenn ihre Determinante gleich ist.
Die Gruppe, die aus allen Isometrien von besteht, heißt orthogonale Gruppe zu , und die eigentlichen Isometrien bilden die spezielle orthogonale Gruppe. Bei schreibt man dafür
Es sei ein euklidischer Vektorraum und sei
eine lineare Isometrie.
Dann besitzt jeder Eigenwert von den Betrag .
Es sei mit , d.h. ist ein Eigenvektor zum Eigenwert . Wegen der Isometrieeigenschaft gilt
Wegen folgt daraus , also .
Im Allgemeinen muss es keine Eigenwerte geben (bei ungerader Dimension allerdings schon). Wir besprechen zunächst den zweidimensionalen Fall ausführlicher.
- Bewegungen in der Ebene
Es sei
eine eigentliche, lineare Isometrie.
Dann ist eine Drehung,
und ihre Matrix hat bezüglich der Standardbasis die Gestalt
mit einem eindeutig bestimmten Drehwinkel .
Es seien und die Bilder der Standardvektoren und . Unter einer Isometrie wird die Länge eines Vektors erhalten, daher ist
Daher ist eine reelle Zahl zwischen und und , d.h. ist ein Punkt auf dem reellen Einheitskreis. Der Einheitskreis wird bekanntlich durch die trigonometrischen Funktionen parametrisiert, d.h. es gibt einen eindeutig bestimmten Winkel , , mit
Da unter einer Isometrie die Senkrechtsbeziehung erhalten bleibt, muss
gelten. Bei folgt daraus (wegen ) . Dann ist und wegen der Eigentlichkeit muss das Vorzeichen dasselbe wie von sein. Es sei also . Dann gilt
Da die beiden Vektoren die Länge haben, muss der skalare Faktor den Betrag haben. Bei
wäre
und die Determinante wäre . Also muss
und
sein, was die Behauptung ergibt.
Es sei eine endliche Untergruppe der linearen Bewegungsgruppe der reellen Ebene.
Dann ist eine zyklische Gruppe.
Jedes Element aus ist nach Satz 10.4 eine Drehung der Ebene um einen bestimmten Winkel . Wir betrachten den surjektiven Gruppenhomomorphismus
der einen Winkel auf die zugehörige Drehung abbildet. Es sei das Urbild von unter dieser Abbildung, d.h. besteht aus allen Drehwinkeln zu Drehungen, die zu gehören. Die Gruppe wird von einem Repräsentantensystem für die Elemente aus zusammen mit erzeugt. Insbesondere ist also eine endlich erzeugte Untergruppe von . Da jedes Gruppenelement aus eine endliche Ordnung besitzt, muss jedes die Gestalt mit einer rationalen Zahl haben. Dies bedeutet, dass eine endlich erzeugte Untergruppe von ist. Damit ist isomorph zu einer endlich erzeugten Untergruppe der rationalen Zahlen. Nach Aufgabe 3.9 ist zyklisch, sagen wir mit einem eindeutig bestimmten Winkel . Dann ist die Gruppe als Bild von ebenfalls zyklisch.
Wenn man auch noch uneigentliche Symmetrien, also Isometrien mit der Determinante
(etwa Achsenspiegelungen)
zulässt, so gibt es noch eine weitere Familie von endlichen Untergruppen der , nämlich die Diedergruppen.
Zu einem regelmäßigen -Eck () heißt die Gruppe der (eigentlichen oder uneigentlichen) linearen Symmetrien die Diedergruppe .
Die Diedergruppe besteht aus den Drehungen des -Ecks und aus den Achsenspiegelungen an den folgenden Achsen durch den Nullpunkt:
bei gerade die Achsen durch gegenüberliegende Eckpunkte und gegenüberliegende Kantenmittelpunkte, bei ungerade die Achsen durch einen Eckpunkt und einen gegenüberliegenden Kantenmittelpunkt.
In beiden Fällen besteht die Diedergruppe aus Elementen.
- Bewegungen im Raum
Das charakteristische Polynom zu ist ein normiertes Polynom vom Grad drei. Für geht und für geht . Nach dem Zwischenwertsatz besitzt daher mindestens eine Nullstelle. Eine solche Nullstelle ist ein Eigenwert von . Nach Satz 10.3 ist der Eigenwert gleich oder gleich .
Eine eigentliche lineare Isometrie des Raumes führt insbesondere die Einheitskugel durch eine Bewegung in sich über. Man kann sich eine solche Isometrie also gut als eine Drehung an einer Kugel vorstellen, die in einer passenden Schale liegt.
besitzt einen Eigenvektor zum Eigenwert ,
d.h. es gibt eine Gerade (durch den Nullpunkt), die unter fest bleibt.
Wir betrachten das charakteristische Polynom von , also
Dies ist ein normiertes reelles Polynom vom Grad drei. Für ergibt sich
Da für das Polynom geht, muss es für ein positives eine Nullstelle geben. Aufgrund von Satz 10.3 kommt dafür nur in Frage.
Es sei
eine lineare Isometrie auf einem euklidischen Vektorraum und sei ein invarianter Unterraum.
Dann ist auch das orthogonale Komplement invariant.
Insbesondere kann man als direkte Summe
schreiben, wobei die Einschränkungen und ebenfalls Isometrien sind.
Es ist
Für ein solches und ein beliebiges ist
da liegt wegen der Invarianz von . Also ist wieder .
Es sei
eine eigentliche Isometrie.
Dann ist eine Drehung um eine feste Achse.
Das bedeutet, dass in einer geeigneten Orthonormalbasis durch eine Matrix der Form
beschrieben wird.
Nach Satz 10.8 gibt es einen Eigenvektor zum Eigenwert . Sei die davon erzeugte Gerade. Diese ist fix und insbesondere invariant unter . Nach Lemma 34.1 (Lineare Algebra (Osnabrück 2024-2025)) ist dann auch das orthogonale Komplement invariant unter , d.h. es gibt eine lineare Isometrie
die auf mit übereinstimmt. Dabei muss eigentlich sein, und daher muss nach Satz 10.4 eine Drehung sein. Wählt man einen Vektor der Länge eins aus und dazu eine Orthonormalbasis von , so hat bezüglich dieser Basis die angegebene Gestalt.
- Halbachsensysteme
Es sei eine endliche Untergruppe der Gruppe der eigentlichen, linearen Isometrien. Jedes Element , , ist nach Satz 10.10 eine Drehung um eine eindeutig bestimmte Drehachse . Insbesondere sind an einer endlichen Symmetriegruppe nur endlich viele Drehachsen beteiligt. Jedes Gruppenelement bewirkt dann eine Permutation der Drehachsenmenge, und diese Bedingung schränkt die möglichen Gruppen wesentlich ein. Eine Drehachse zerfällt in zwei Halbachsen, und es ist sinnvoll, die Wirkungsweise der Gruppe auf diesen Halbachsen zu untersuchen.
Bei einem Würfel gibt es drei verschiedene Arten von Drehachsen: Es gibt drei Drehachsen, die durch die Seitenmittelpunkte gegeben sind, vier Drehachsen, die durch die Eckpunkte gegeben sind und sechs Drehachsen, die durch die Kantenmittelpunkte gegeben sind. Betrachtet man alle Durchstoßungspunkte dieser Achsen mit der Sphäre vom Radius , so ergeben sich
Punkte. Diese Punkte entsprechen den Halbachsen. Dabei gibt es zu je zwei Eckpunkten
(bzw. den zugehörigen Durchstoßungspunkten)
(mindestens)
eine Würfelbewegung, die sie ineinander überführt, ebenso zu je zwei Kantenmittelpunkten und zu je zwei Seitenmittelpunkten. Jede Bewegung permutiert diese charakteristischen Punkte. Wenn man eine Achse
(oder einen Durchstoßungspunkt)
fixiert, so kann man die Menge der Bewegungen betrachten, die diese Achse als Drehachse haben. Es kann natürlich auch die Achse zwar auf sich selbst abgebildet werden, aber nicht fix sein. Dann werden die gegenüberliegenden Durchstoßungspunkte ineinander überführt.
Es sei eine endliche Untergruppe der Gruppe der eigentlichen, linearen Isometrien im . Dann nennt man jede Gerade durch den Nullpunkt, die als Drehachse eines Elementes auftritt, eine Achse von . Die Halbgeraden dieser Drehachsen nennt man die Halbachsen der Gruppe und die Gesamtmenge dieser Halbachsen nennen wir das zu gehörige Halbachsensystem. Es wird mit bezeichnet. Zwei Halbachsen heißen äquivalent, wenn es ein mit gibt. Die Äquivalenzklassen zu dieser Äquivalenzrelation nennt man Halbachsenklassen.
Da jede von verschiedene Drehung genau eine Drehachse hat, ist das Halbachsensystem zu einer endlichen Symmetriegruppe endlich (und zwar ist die Anzahl maximal gleich ). Wenn eine Halbachse ist und , so ist auch eine Halbachse: wenn nämlich die durch definierte Achse als Drehachse besitzt, so ist
Mit „äquivalenten Halbachsen“ ist also wirklich eine Äquivalenzrelation definiert.
Beispiel
Beim Würfel werden die Halbachsen durch die Eckpunkte, die Seitenmittelpunkte und die Kantenmittelpunkte repräsentiert. Diese drei Arten bilden dann auch die Äquivalenzklassen, also die Halbachsenklassen. Der Vergleich mit dem Oktaeder zeigt, dass die Sprechweise mit den Halbachsen für die Bewegungsgruppe als solche angemessener ist als die Sprechweise mit Ecken, Kanten, Mittelpunkten.
Beispiel
Bei einem Tetraeder gibt es vier Eck-Seitenmittelpunkt-Achsen und vier Kantenmittelpunktachsen. Die Kantenmittelpunkthalbachsen sind dabei alle untereinander äquivalent, während die zuerst genannten Achsen in zwei Halbachsenklassen zerfallen, nämlich die Eckhalbachsen und die Seitenhalbachsen.
An diesem Beispiel sieht man auch, dass die beiden durch eine Drehachse gegebenen Halbachsen nicht zueinander äquivalent sein müssen.