Kurs:Mathematik für Anwender/Teil I/48/Klausur mit Lösungen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Punkte 3 3 2 3 2 4 1 7 3 7 6 5 4 4 3 3 4 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine Primzahl.
  2. Eine Teilfolge einer Folge reeller Zahlen.
  3. Eine gerade Funktion .
  4. Der Logarithmus zur Basis , , einer positiven reellen Zahl .
  5. Das bestimmte Integral zu einer Riemann-integrierbaren Funktion
  6. Eine Basis eines - Vektorraums .


Lösung

  1. Eine natürliche Zahl heißt eine Primzahl, wenn die einzigen natürlichen Teiler von ihr und sind.
  2. Zu einer streng wachsenden Abbildung , , heißt die Folge

    eine Teilfolge der Folge.

  3. Eine Funktion heißt gerade, wenn für alle die Gleichheit

    gilt.

  4. Der Logarithmus zur Basis , , von ist durch

    definiert.

  5. Das nach Voraussetzung existierende Oberintegral zu über heißt bestimmtes Integral.
  6. Eine Familie , , von Vektoren in heißt Basis, wenn diese Vektoren linear unabhängig sind und ein Erzeugendensystem bilden.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über die Konvergenz des Cauchy-Produktes.
  2. Der Mittelwertsatz der Integralrechnung.
  3. Der Satz über die Beziehung zwischen Eigenschaften von linearen Abbildungen und Matrizen.


Lösung

  1. Es seien

    zwei absolut konvergente Reihen reeller Zahlen. Dann ist auch das Cauchy-Produkt absolut konvergent und für die Summe gilt

  2. Es sei ein kompaktes Intervall und sei

    eine stetige Funktion. Dann gibt es ein mit

  3. Es sei ein Körper und es seien und Vektorräume über der Dimension bzw. . Es sei

    eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix beschrieben werde. Dann gelten folgende Eigenschaften.

    1. ist genau dann injektiv, wenn die Spalten der Matrix linear unabhängig sind.
    2. ist genau dann surjektiv, wenn die Spalten der Matrix ein Erzeugendensystem von bilden.
    3. Bei ist genau dann bijektiv, wenn die Spalten der Matrix eine Basis von bilden, und dies ist genau dann der Fall, wenn invertierbar ist.


Aufgabe (2 Punkte)

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

w w w w
w w f f
w f w f
w f f f
f w w f
f w f f
f f w f
f f f w


Lösung


Aufgabe (3 Punkte)

Es sei

eine injektive Abbildung. Zeige, dass es eine Teilmenge derart gibt, dass man als Abbildung

auffassen kann ( und unterscheiden sich nur hinsichtlich des Wertebereichs) und dass bijektiv ist.


Lösung

Es sei

Da sämtliche Elemente aus enthält, die überhaupt unter getroffen werden, kann man als eine Abbildung

auffassen. Diese Abbildung ist surjektiv, da ja jedes Element aus nach Definition getroffen wird. Die Injektivität überträgt sich direkt von auf , da die Gleichheit von Elementen in einer Teilmenge mit der Gleichheit in der Menge übereinstimmt. Daher ist bijektiv.


Aufgabe (2 Punkte)

Wenn man alles Gold der Welt zusammennimmt, so erhält man einen Würfel, dessen Seitenlänge Meter beträgt. Dieser soll auf die Weltbevölkerung ( Milliarden) gleichmäßig aufgeteilt und als Goldwürfel ausgeteilt werden. Welche Seitenlänge hat der Würfel, den jeder Mensch bekommt?


Lösung

Es ist

deshalb ist die Seitenlänge der zu verteilenden Würfel gleich

also Zentimeter.


Aufgabe (4 Punkte)

Es seien rationale Zahlen. Zeige, dass

genau dann gilt, wenn es ein mit gibt.


Lösung

Es sei . Da ganze Zahlen sind, ist ganzzahlig. Damit gilt

Es sei nun mit . Aus der definierenden Beziehung

folgt

daher muss

sein. Somit ist


Aufgabe (1 Punkt)

Schreibe das Polynom

als Produkt von Linearfaktoren in .


Lösung

Es ist


Aufgabe (7 Punkte)

Beweise den Satz über die Division mit Rest im Polynomring über einem Körper .


Lösung

Wir beweisen die Existenzaussage durch Induktion über den Grad von . Wenn der Grad von größer als der Grad von ist, so ist und eine Lösung, sodass wir dies nicht weiter betrachten müssen. Bei ist nach der Vorbemerkung auch , also ist ein konstantes Polynom, und damit ist (da und ein Körper ist) und eine Lösung. Es sei nun und die Aussage für kleineren Grad schon bewiesen. Wir schreiben und mit . Dann gilt mit die Beziehung

Dieses Polynom hat einen Grad kleiner als und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt und mit

Daraus ergibt sich insgesamt

sodass also und eine Lösung ist. Zur Eindeutigkeit sei mit den angegebenen Bedingungen. Dann ist . Da die Differenz einen Grad kleiner als besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei und lösbar.


Aufgabe (3 Punkte)

Berechne von Hand die Approximationen im Heron-Verfahren für die Quadratwurzel von zum Startwert .


Lösung

Es ist


Aufgabe (7 (2+2+3) Punkte)

  1. Man gebe ein Beispiel für reelle Folgen und , , derart, dass gegen konvergiert, aber nicht konvergiert.
  2. Man gebe ein Beispiel für reelle Folgen und , , derart, dass gegen konvergiert, aber nicht konvergiert.
  3. Es seien und reelle Folgen derart, dass gegen konvergiert. Es gebe ein mit

    für alle . Zeige, dass gegen konvergiert.


Lösung

  1. Es sei

    und

    für . Dann ist

    Dies konvergiert gegen . Die Differenzfolge

    konvergiert nicht.

  2. Es sei

    und

    Dann ist

    Dies konvergiert nicht. Die Differenzfolge

    konvergiert gegen , da beide Folgen Nullfolgen sind.

  3. Wir schreiben

    wobei nach Voraussetzung eine Nullfolge ist. Damit ist

    Dabei ist

    eine Nullfolge. Somit konvergiert die Quotientenfolge gegen .


Aufgabe (6 Punkte)

Beweise den Zwischenwertsatz.


Lösung

Wir beschränken uns auf die Situation und zeigen die Existenz von einem solchen mit Hilfe einer Intervallhalbierung. Dazu setzt man und , betrachtet die Intervallmitte und berechnet

Bei setzt man

und bei setzt man

In jedem Fall hat das neue Intervall die halbe Länge des Ausgangsintervalls und liegt in diesem. Da es wieder die Voraussetzung erfüllt, können wir darauf das gleiche Verfahren anwenden und gelangen so rekursiv zu einer Intervallschachtelung. Sei die durch diese Intervallschachtelung gemäß Satz 8.12 (Mathematik für Anwender (Osnabrück 2023-2024)) definierte reelle Zahl. Für die unteren Intervallgrenzen gilt und das überträgt sich wegen der Stetigkeit nach dem Folgenkriterium auf den Grenzwert , also . Für die oberen Intervallgrenzen gilt und das überträgt sich ebenfalls auf , also .  Also ist .


Aufgabe (5 Punkte)

Bestimme den Grenzwert der Funktion für ().


Lösung

Es ist

und somit ist

zu bestimmen. Da die Exponentialfunktion stetig ist, müssen wir

bestimmen. Sowohl die Zähler- als auch die Nennerfunktion besitzen den Grenzwert . Wir können die Regel von Hospital anwenden und betrachten

Dies konvergiert für gegen . Somit ist auch

und damit ist


Aufgabe (4 Punkte)

Die Graphen der Sinusfunktion und der Kosinusfunktion überkreuzen sich mehrfach und begrenzen dabei Gebiete mit einem endlichen Flächeninhalt. Bestimme den Flächeninhalt eines solchen Gebietes.


Lösung

Aufgrund von [[Sinus und Kosinus/R/Periodizitätseigenschaften/Fakt|Kurs:Mathematik für Anwender (Osnabrück 2023-2024)/Sinus und Kosinus/R/Periodizitätseigenschaften/Fakt/Faktreferenznummer (Mathematik für Anwender (Osnabrück 2023-2024))  (3)]] ist und damit

Diese Überkreuzung wiederholt sich mit der Periode . Wegen

ist der Wert an den Überkreuzungsstellen abwechselnd gleich

Von bis verläuft der Sinus oberhalb des Kosinus. Der eingeschlossene Flächeninhalt ist somit


Aufgabe (4 Punkte)

Wir betrachten die Quadratabbildung

für verschiedene Körper .

  1. Ist linear für
  2. Ist linear für

    dem Körper mit zwei Elementen.

  3. Es sei nun ein Körper, in dem gelte, der mehr als zwei Elemente enthalte. Ist linear? Ist verträglich mit der Addition?


Lösung

  1. Es ist

    somit ist auf nicht linear.

  2. Für den Körper mit zwei Elementen ist und . Also ist die Identität und somit linear.
  3. Es ist

    daher erfüllt die Additivität. Sie ist aber nicht mit der Skalierung verträglich und somit nicht linear. Nehmen wir an, dass mit der Skalierung verträglich wäre. Dann ist für jedes

    In einem Körper gibt es aber nur zwei Elemente, die die Gleichung

    erfüllen.


Aufgabe (3 Punkte)

Berechne die Determinante der Matrix


Lösung

Es ist


Aufgabe (3 Punkte)

Finde ganze Zahlen derart, dass die Determinante der Matrix

gleich ist.


Lösung

Eine solche Matrix ist


Aufgabe (4 Punkte)

Es sei ein endlichdimensionaler - Vektorraum und seien lineare Abbildungen, von denen die charakteristischen Polynome bekannt seien. Kann man daraus das charakteristische Polynom von bestimmen?


Lösung

Das kann man nicht. Wir betrachten die beiden nilpotenten - Matrizen

Ihr charakteristisches Polynom ist jeweils . Ihre Summe ist

und das charakteristische Polynom davon ist . Wenn man dagegen zweimal nimmt, also , so ist dies ebenfalls nilpotent, und das charakteristische Polynom ist .