Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 51/kontrolle
- Aufwärmaufgaben
Man gebe ein Beispiel einer bijektiven differenzierbaren Abbildung
mit einer stetigen Umkehrabbildung derart, dass nicht differenzierbar ist.
Definiere explizit einen Diffeomorphismus zwischen und einer offenen Kugel .
Es seien
stetig differenzierbare Funktionen. Betrachte die Abbildung
- Die Abbildung ist differenzierbar.
- Das totale Differential von in ist genau dann bijektiv, wenn von sämtlichen Funktionen , die Ableitungen in nicht sind.
- ist genau dann auf einer offenen Umgebung von bijektiv, wenn die einzelnen in einer geeigneten Umgebung bijektiv sind.
Bestimme die regulären Punkte der Abbildung
Zeige, dass in regulär ist und bestimme das totale Differential der Umkehrabbildung von in , wobei eine offene Umgebung von sei (die nicht explizit angegeben werden muss).
Es seien euklidische Vektorräume und seien und differenzierbare Abbildungen. Es sei regulär in und regulär in . Ist dann regulär in ? Unter welchen Voraussetzungen stimmt dies?
Das komplexe Quadrieren
kann man reell als
schreiben. Untersuche auf reguläre Punkte. Auf welchen (möglichst großen) offenen Teilmengen ist umkehrbar?
Man gebe ein Beispiel einer Funktion
das zeigt, dass im Satz über die (lokale) Umkehrbarkeit die Bijektivität im Allgemeinen nur auf echten Teilintervallen besteht.
Man gebe für jedes eine bijektive, total differenzierbare Abbildung
an, für die das totale Differential in mindestens einem Punkt nicht regulär ist.
- Aufgaben zum Abgeben
Aufgabe (2 Punkte)Referenznummer erstellen
Seien und offene Mengen in euklidischen Vektorräumen und . Es sei
eine bijektive Abbildung, die in einem Punkt differenzierbar sei derart, dass die Umkehrabbildung in auch differenzierbar ist. Zeige, dass das totale Differential bijektiv ist.
Aufgabe (4 Punkte)Referenznummer erstellen
Bestimme die Umkehrabbildung zur Abbildung
(Tipp: Versuche, diese Funktion als Hintereinanderschaltung von einfacheren Abbildungen zu schreiben.)
Es seien und endlichdimensionale reelle Vektorräume, offen und sei
eine stetig differenzierbare Abbildung. Es sei eine offene Teilmenge derart, dass für jeden Punkt das totale Differential bijektiv ist. Zeige, dass dann das Bild offen in ist.
Aufgabe (7 Punkte)Referenznummer erstellen
Betrachte die Abbildung
- Bestimme die regulären Punkte von .
- Zeige, dass in den kritischen Punkten die Abbildung nicht lokal invertierbar ist, dass also die Einschränkung von in keiner offenen Umgebung eines kritischen Punktes bijektiv wird.
- Lässt sich jedes reelle Zahlenpaar als schreiben?
- Ist ein reelles Zahlenpaar bis auf Vertauschen der Komponenten eindeutig durch die Summe und das Produkt festgelegt?
Aufgabe (5 Punkte)Referenznummer erstellen
Betrachte die Abbildung
Zeige, dass ein Punkt genau dann ein kritischer Punkt von ist, wenn in zwei Zahlen doppelt vorkommen.
Aufgabe (5 Punkte)Referenznummer erstellen
Betrachte die Abbildung
Zeige, dass die Menge der kritischen Punkte von eine Gerade umfasst, aber auch noch weitere (mindestens einen) Punkte enthält.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|