Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II/Vorlesung 35



Metrische Räume

Es sei eine Menge. Eine Abbildung heißt Metrik (oder Distanzfunktion), wenn für alle die folgenden Bedingungen erfüllt sind:

  1. genau dann, wenn ist (Definitheit),
  2. (Symmetrie), und
  3. (Dreiecksungleichung).

Ein metrischer Raum ist ein Paar , wobei eine Menge und eine Metrik ist.

Man kann leicht aus den Bedingungen folgern, dass eine Metrik nur nichtnegative Werte annimmt. Der Wert gibt den Abstand der Punkte und bezüglich an. Oft wird die Metrik nicht in der Notation erwähnt, obwohl es Situationen gibt, in denen verschiedene Metriken auf ein- und derselben Menge betrachtet werden.


Es sei ein euklidischer Vektorraum und

der zugehörige Abstand. Dieser besitzt nach Lemma 34.10 die Eigenschaften einer Metrik. Insbesondere ist im der durch

gegebene euklidische Abstand eine Metrik.


Wenn wir nichts anderes sagen, so versehen wir den und den stets mit dem euklidischen Abstand. Insbesondere sind die reellen Zahlen und die komplexen Zahlen mit der durch den Betrag definierten Metrik metrische Räume. Als gemeinsame Bezeichnung für und werden wir wieder verwenden.

Die Summenmetrik heißt auch Taxi-Metrik. Die grüne Linie repräsentiert den euklidischen Abstand, die anderen repräsentieren den Summenabstand.

Auf dem ist

eine Metrik, die man die Summenmetrik nennt.



Auf dem ist

eine Metrik, die man die Maximumsmetrik nennt.



Es sei ein metrischer Raum und eine Teilmenge. Dann ist ebenfalls ein metrischer Raum, wenn man

für alle setzt. Diese Metrik heißt die induzierte Metrik.



Zu einer beliebigen Menge kann man durch

eine Metrik definieren, die die diskrete Metrik heißt.




Teilmengen in metrischen Räumen
Die Gestalt der Kugelumgebungen hängt von der Metrik ab.

Es sei ein metrischer Raum, und eine positive reelle Zahl. Es ist

die offene und

die abgeschlossene -Kugel um .

Natürlich müssen Kugeln nicht unbedingt kugelförmig aussehen, aber sie tun es in der euklidischen Norm. Für ist einfach das beidseitig offene Intervall und ist einfach das beidseitig abgeschlossene Intervall .

Eine Teilmenge ist offen, wenn jeder Punkt darin gleich mit einer vollen Kugelumgebung drin liegt. Bei einer solchen Menge ist es entscheidend, ob die Randpunkte dazu gehören oder nicht.



Es sei ein metrischer Raum. Eine Teilmenge heißt offen (in ), wenn für jedes ein mit

existiert.


Es sei ein metrischer Raum. Eine Teilmenge heißt abgeschlossen, wenn das Komplement offen ist.

Achtung! Abgeschlossen ist nicht das „Gegenteil“ von offen. Die „allermeisten“ Teilmengen eines metrischen Raumes sind weder offen noch abgeschlossen, es gibt aber auch Teilmengen, die sowohl offen als auch abgeschlossen sind, z.B. die leere Teilmenge und die Gesamtmenge.



Es sei ein metrischer Raum und ein Punkt.

Dann sind die offenen Kugeln offen und die abgeschlossenen Kugeln abgeschlossen.

Sei , d.h. es ist . Wir setzen und behaupten, dass ist. Dazu sei . Dann ist aufgrund der Dreiecksungleichung

und somit . Für die zweite Behauptung siehe Aufgabe 35.7.



Es sei ein metrischer Raum. Dann gelten folgende Eigenschaften.

  1. Die leere Menge und die Gesamtmenge sind offen.
  2. Es sei eine beliebige Indexmenge und seien , , offene Mengen. Dann ist auch die Vereinigung

    offen.

  3. Es sei eine endliche Indexmenge und seien , , offene Mengen. Dann ist auch der Durchschnitt

    offen.

Beweis

Siehe Aufgabe 35.9.



Folgen in metrischen Räumen

Wir besprechen die Konvergenz einer Folge in einem metrischen Raum. Eine Folge im ist beispielsweise durch

Es handelt sich um eine Folge, die sich auf dem Einheitskreis bewegt, und zwar dreht sich der Punkt um die Bogenlänge (also um ca. Grad). Die Folgenglieder nähern sich also nicht untereinander an, sodass keine Konvergenz zu erwarten ist. Bei der Folge

bewegen sich die Glieder auf einer „gedachten Spirale“. Die Punkte drehen sich nach wie vor um den gleichen Winkel, allerdings wird der Abstand zum Nullpunkt immer kleiner, sodass man Konvergenz gegen erwarten kann.


Es sei ein metrischer Raum und sei eine Folge in . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Beziehung

gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch

Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert), andernfalls, dass sie divergiert.

Diese Definition stimmt natürlich für mit unserem bisherigen Begriff für konvergente Folge überein. Allerdings hatten wir, als wir diesen Begriff für angeordnete Körper einführten, die reellen Zahlen selbst noch nicht zur Verfügung. Die Bedingung kann man auch so ausdrücken, dass für stets ist. Da die Eigenschaft für alle positiven gilt, kann man genauso gut mit offenen Bällen arbeiten.



Der sei mit der euklidischen Metrik versehen und sei eine Folge in mit

Dann konvergiert die Folge im genau dann, wenn alle Komponentenfolgen in konvergieren.

Es sei die Gesamtfolge konvergent gegen . Wir behaupten, dass die -te Komponentenfolge gegen konvergiert. Sei (ohne Einschränkung) und vorgegeben. Wegen der Konvergenz der Gesamtfolge gibt es ein mit für alle . Daher ist


Es seien nun alle Komponentenfolgen konvergent, wobei die -te Folge den Grenzwert besitzen möge, und sei ein vorgegeben. Wir setzen und behaupten, dass die Folge gegen konvergiert. Zu gibt es für jede Komponentenfolge ein derart, dass für alle gilt. Dann gilt für alle

die Beziehung


Insbesondere konvergiert eine Folge von komplexen Zahlen genau dann, wenn die zugehörigen Folgen der Realteile und der Imaginärteile konvergieren.

Für eine konvergente reelle Folgen haben wir im ersten Semester die Eigenschaft kennengelernt, dass wenn sämtliche Folgenglieder sind, dass dann auch der Limes ist (für „“ gilt das nicht). Die Hinrichtung der folgenden Aussage ist eine wesentliche Verallgemeinerung dieses Sachverhalts.


Es sei ein metrischer Raum und eine Teilmenge.

Dann ist genau dann abgeschlossen, wenn jede Folge , die in konvergiert, bereits in konvergiert.

Es sei zunächst abgeschlossen und eine Folge gegeben, die in gegen konvergiert. Wir müssen zeigen, dass ist. Angenommen, dies wäre nicht der Fall. Dann liegt im offenen Komplement von und daher gibt es ein derart, dass der gesamte -Ball im Komplement von liegt. Also ist

Da die Folge aber gegen konvergiert, gibt es ein derart, dass alle Folgenglieder , , zu diesem Ball gehören. Da sie andererseits in liegen, ist dies ein Widerspruch.
  Es sei nun nicht abgeschlossen. Wir müssen eine Folge in konstruieren, die in konvergiert, deren Grenzwert aber nicht zu gehört. Da nicht abgeschlossen ist, ist das Komplement nicht offen. D.h. es gibt einen Punkt derart, dass in jedem -Ball von auch Punkte außerhalb von , also in liegen. Insbesondere ist also für jede natürliche Zahl der Durchschnitt

Wir wählen aus dieser Schnittmenge ein Element und behaupten, dass die sich ergebende Folge die gewünschten Eigenschaften besitzt. Zunächst liegen nach Konstruktion alle Folgenglieder in . Die Folge konvergiert gegen , da man sich hierzu auf

beschränken kann und alle Folgenglieder , , in liegen. Da der Grenzwert einer Folge im Falle der Existenz eindeutig bestimmt ist, und ist, konvergiert die Folge in nicht.




Berührpunkte



Es sei ein metrischer Raum und eine Teilmenge. Ein Punkt heißt Berührpunkt von , wenn zu jedem der Durchschnitt

Beispielsweise sind und Berührpunkte des offenen Intervalls oder ist ein Berührpunkt von . Oft ist der Definitionsbereich einer Abbildung in einen weiteren metrischen Raum und man fragt sich, ob es eine sinnvolle Fortsetzung von in einen Berührpunkt gibt. Siehe insbesondere die 37. Vorlesung.


<< | Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)