- Es sei ein Vektorraum über mit einem Skalarprodukt und der zugehörigen Norm . Dann gilt die Abschätzung
-
für alle .
- Es sei
-
eine lineare Abbildung auf einem endlichdimensionalen -Vektorraum. Dann ist genau dann trigonalisierbar, wenn das charakteristische Polynom von in Linearfaktoren zerfällt.
- Es sei
offen und
eine Abbildung derart, dass für
die zweiten Richtungsableitungen und existieren und stetig sind. Dann gilt
-
- Das Volumen des durch bestimmten Rotationskörpers ist
-
Es ist
Es ist
Wir machen den Ansatz
-
aufgrund der Anfangswertbedingungen ist und . Es ist
und .
Aus der Gleichung
-
lassen sich die Koeffizienten bestimmen.
Koeffizientenvergleich zu ergibt
-
also ist .
Koeffizientenvergleich zu ergibt
-
also ist .
Koeffizientenvergleich zu ergibt
-
also ist .
Daher ist
-
die Lösung des Anfangswertproblems bis zur Ordnung .
Dies folgt direkt aus
Die relevanten Ableitungen sind
-
-
-
-
-
Somit sind die Werte der relevanten Ableitungen im Punkt gleich
-
-
-
-
-
-
Daher ist das Taylor-Polynom der Ordnung zwei gleich
-
Es seien die Markierungen der möglichen Intervallunterteilungen. Der Flächeninhalt der zugehörigen maximalen unteren Treppenfunktion von ist
Die partiellen Ableitungen davon sind
-
Wir bestimmen die kritischen Punkte. Aus der ersten Gleichung folgt
-
(den negativen Fall kann man ausschließen).
Wir setzen
in die zweite Gleichung ein und erhalten die Bedingung
-
woraus
-
folgt. Daher ist
-
und der einzige kritische Punkt ist
-
Die Hesse-Matrix von ist
-
Im kritischen Punkt ist der Eintrag links oben negativ. Die Determinante ist
-
positiv, sodass die Hesse-Matrix negativ definit ist und daher im kritischen Punkt ein Maximum vorliegt. Da es auch in einer geeigneten
(kleinen) offenen Umgebung des abgeschlossenen Definitionsbereiches keinen weiteren kritischen Punkt gibt, liegt ein absolutes Maximum vor. Der Wert ist
a) Die Jacobi-Matrix ist
-
b) Die Jacobi-Matrix im Nullpunkt ist
-
Diese Matrix hat den Rang , sodass der Nullpunkt nicht regulär ist.
c) Die Jacobi-Matrix in ist
-
Die Determinante der vorderen -Untermatrix ist , sodass die ersten vier Spaltenvektoren linear unabhängig sind und daher der Rang der Matrix gleich ist. Daher handelt es sich um einen regulären Punkt.
Wir schreiben das Vektorfeld als . Die konstante Anfangsbedingung führt zu . Die erste Picard-Lindelöf-Iteration führt auf
Die zweite Picard-Lindelöf-Iteration führt auf
Die dritte Picard-Lindelöf-Iteration führt auf
a) Es ist
-
und ebenso
-
es ist
-
und ebenso
-
und schließlich ist
-
und ebenso
-
die Integrabilitätsbedingungen sind also erfüllt. Da sternförmig ist, handelt es sich um ein Gradientenfeld.
b) Ein
Potential
zu ist
-
wie man durch Ableiten bestätigt.
a) Es ist
-
die Komponentenfunktionen sind also und .
b) Es ist
und
- Hilfsmittel
-
Zur pdf-Version der Klausur
Zur pdf-Version der Klausur mit Lösungen