Kurs:Analysis/Teil I/9/Klausur mit Lösungen
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 3 | 3 | 3 | 4 | 2 | 6 | 4 | 3 | 5 | 4 | 1 | 5 | 4 | 5 | 6 | 64 |
Aufgabe (3 Punkte)
Definiere die folgenden (kursiv gedruckten) Begriffe.
- Das Urbild zu einer Teilmenge unter einer Abbildung .
- Eine wachsende Folge in einem angeordneten Körper.
- Eine
stetige Fortsetzung
einer stetigen Funktion
auf eine Teilmenge , .
- Die Exponentialfunktion zur Basis im Komplexen.
- Eine
konkave
Funktion
auf einem reellen Intervall .
- Eine
ortsunabhängige
gewöhnliche Differentialgleichung
- Zu einer Teilmenge heißt
das Urbild von unter .
- Die Folge heißt wachsend, wenn für alle ist.
- Eine
Abbildung
heißt eine stetige Fortsetzung von , wenn stetig ist und für alle gilt.
- Die Exponentialfunktion zur Basis von wird durch
definiert.
- Die Funktion heißt konkav, wenn ihr Subgraph eine konvexe Menge ist.
- Ortsunabhängig bedeutet, dass die Funktion nicht von abhängt.
Aufgabe (3 Punkte)
Formuliere die folgenden Sätze.
- Der Satz von Bolzano-Weierstraß.
- Der Zwischenwertsatz.
- Die
Taylor-Formel
für eine -mal
differenzierbare
Funktion
- Es sei eine beschränkte Folge von reellen Zahlen. Dann besitzt die Folge eine konvergente Teilfolge.
- Es seien reelle Zahlen und sei eine stetige Funktion. Es sei eine reelle Zahl zwischen und . Dann gibt es ein mit .
- Zu jedem Punkt gibt es ein mit
Aufgabe (3 Punkte)
Eine Bahncard , mit der man ein Jahr lang Prozent des Normalpreises einspart, kostet Euro und eine Bahncard , mit der man ein Jahr lang Prozent des Normalpreises einspart, kostet Euro. Für welchen Jahresgesamtnormalpreis ist keine Bahncard, die Bahncard oder die Bahncard die günstigste Option?
Es sei der Gesamtnormalpreis. Mit BC25 hat man die Kosten
und mit BC50 hat man die Kosten
Die Bedingung
führt auf
Die Bedingung
führt auf
Die Bedingung
führt auf
also
Also ist für keine Bahncard die günstigste Option, für ist die BC25 die günstigste Option und für ist die BC50 die günstigste Option.
Aufgabe (3 Punkte)
Zeige durch vollständige Induktion, dass für jedes die Zahl
ein Vielfaches von ist.
Induktionsanfang. Für ist
ein Vielfaches von . Induktionsschritt. Es sei nun die Aussage für bewiesen und betrachten wir den Ausdruck für . Dieser ist
wobei im vorletzten Schritt die Induktionsvoraussetzung verwendet wurde (nämlich die Eigenschaft, dass ein Vielfaches von ist). Daher ist diese Zahl ein Vielfaches von .
Aufgabe (3 Punkte)
Wir erweitern den Bruch mit () und schreiben
Dabei konvergieren und gegen und wegen konvergieren auch und gegen . Somit konvergiert die Folge gegen .
Aufgabe (4 Punkte)
Es sei eine Cauchy-Folge in , die keine Nullfolge sei. Zeige, dass es ein derart gibt, dass entweder alle , , positiv oder negativ sind.
Da keine Nullfolge ist, gibt es ein derart, dass es zu jedem ein mit gibt. Da es sich um eine Cauchy-Folge handelt, gibt es zu ein derart, dass für alle die Abschätzung gilt. Es sei nun so gewählt, dass ist.
Bei gilt für alle die Abschätzung
sodass für alle Folgenglieder positiv sind.
Bei gilt für alle die Abschätzung
sodass für alle Folgenglieder negativ sind.
Aufgabe (2 Punkte)
Es sei eine Reihe
mit und für alle gegeben. Zeige, dass die Reihe absolut konvergiert.
Für die Reihenglieder ist
Man hat also die geometrische Reihe zu als konvergente Majorante und erhält die absolute Konvergenz der Reihe.
Aufgabe (6 Punkte)
Beweise den Zwischenwertsatz.
Wir beschränken uns auf die Situation und zeigen die Existenz von einem solchen mit Hilfe einer Intervallhalbierung. Dazu setzt man und , betrachtet die Intervallmitte und berechnet
Bei setzt man
und bei setzt man
In jedem Fall hat das neue Intervall die halbe Länge des Ausgangsintervalls und liegt in diesem. Da es wieder die Voraussetzung erfüllt, können wir darauf das gleiche Verfahren anwenden und gelangen so rekursiv zu einer Intervallschachtelung. Sei die durch diese Intervallschachtelung gemäß Satz 7.3 (Analysis (Osnabrück 2021-2023)) definierte reelle Zahl. Für die unteren Intervallgrenzen gilt und das überträgt sich wegen der Stetigkeit nach dem Folgenkriterium auf den Grenzwert , also . Für die oberen Intervallgrenzen gilt und das überträgt sich ebenfalls auf , also . Also ist .
Aufgabe (4 Punkte)
Es sei
ein reelles Polynom vom Grad . Zeige, dass der Durchschnitt des Graphen der Funktion mit jeder Tangenten an den Graphen aus genau einem Punkt besteht.
Die Tangente zu wird durch
beschrieben. Der Punkt gehört zum Graphen und zur Tangente; wir müssen zeigen, dass kein weiterer Punkt zum Durchschnitt gehört. Nehmen wir an, es gäbe einen weiteren Punkt mit . Dies bedeutet
Dies führt auf
Division durch ergibt
und daraus erhält man
Wegen folgt der Widerspruch
Aufgabe (3 Punkte)
Zeige, dass die Funktion
streng wachsend ist.
Die Ableitung ist
Wegen und und für ist die Ableitung nichtnegativ und hat nur für eine Nullstelle. Die Funktion ist also nach Satz 19.5 (Analysis (Osnabrück 2021-2023)) streng wachsend.
Aufgabe (5 Punkte)
Beweise den Satz über die lineare Approximation einer Funktion
in einem Punkt .
Wenn differenzierbar ist, so setzen wir . Für die Funktion muss notwendigerweise
gelten, um die Bedingungen zu erfüllen. Aufgrund der Differenzierbarkeit existiert der Limes
und hat den Wert . Dies bedeutet, dass in stetig ist.
Wenn umgekehrt und mit den angegebenen Eigenschaften existieren, so gilt für die Beziehung
Da stetig in ist, muss auch der Limes links für existieren.
Aufgabe (4 Punkte)
Es sei
eine Funktion, die die Funktionalgleichung
für alle erfülle und die in differenzierbar sei. Zeige, dass dann in jedem Punkt differenzierbar ist und die Beziehung mit einem festen gilt.
Bei ist , sodass die Nullfunktion vorliegt, die die angegebene Ableitungseigenschaft (mit einem beliebigen ) erfüllt. Es sei also . Dann ist wegen . Der Differenzenquotient ist
Der rechte Faktor ist der Differenzenquotient im Nullpunkt. Dieser konvergiert nach Voraussetzung für gegen . Also konvergiert der Differenzenquotient gegen und die Ableitungseigenschaft ist mit erfüllt.
Aufgabe (1 Punkt)
Bestimme die Ableitung von
auf .
Die Ableitung von ist nach der Produktregel gleich
Aufgabe (5 Punkte)
Zu einem Startwert sei die Folge rekursiv durch
definiert. Entscheide, für welche die Folge konvergiert und bestimme gegebenenfalls den Grenzwert.
Wir betrachten die Funktion . Es ist . Die Ableitung der Funktion ist . Daher verläuft der Graph von für echt oberhalb der Diagonalen und für echt unterhalb der Diagonalen. Insbesondere ist , wobei Gleichheit nur bei
gilt. Insbesondere ist also die rekursiv definierte Folge wachsend. Wegen der Stetigkeit der Exponentialfunktion gilt für den Grenzwert einer solchen Folge (falls er existiert)
Diese Bedingung wird nur von erfüllt und dies ist der einzige mögliche Grenzwert. Bei einem Startwert kann die Folge wegen des Wachstumsverhaltens nicht konvergieren. Bei einem Startwert ist
Daher ist eine solche Folge wachsend und nach oben beschränkt und muss somit konvergieren, und zwar gegen den einzig möglichen Grenzwert .
Aufgabe (4 Punkte)
Bestimme eine Stammfunktion von .
Durch Multiplikation mit und Umstellen erhält man
Also ist
eine Stammfunktion von .
Aufgabe (5 (2+3) Punkte)
und in . Man gebe direkt (ohne Bezug auf Standardsubstitutionen der Vorlesung) eine geeignete Substitution an, mit der die Berechnung der Stammfunktion zu auf die Berechnung einer Stammfunktion einer rationalen Funktion in einer Variablen zurückgeführt werden kann.
b) Bestimme eine Stammfunktion für die Funktion (mit )
a) Wir betrachten die Substitution bzw. . Damit ist
Dabei ist jetzt eine rationale Funktion in , und bei der Multiplikation mit bleibt dies eine rationale Funktion.
b) Mit der Substitution bzw. ist
Polynomdivision ergibt
und daher ist dieses Integral gleich
Eine Stammfunktion ist daher
Somit ist
eine Stammfunktion von .
Aufgabe (6 Punkte)
Beweise den Satz über das Lösungsverfahren für Differentialgleichungen mit getrennten Variablen.
Da stetig ist und keine Nullstelle besitzt, ist bzw. nach dem Zwischenwertsatz entweder stets positiv oder stets negativ, sodass nach Satz 19.5 (Analysis (Osnabrück 2021-2023)) streng monoton und daher nach Aufgabe 2.6 (Analysis (Osnabrück 2021-2023)) injektiv (also bijektiv auf sein Bild) ist.
Sei wie angegeben. Dann ist
sodass in der Tat eine Lösung vorliegt.
Es sei nun eine differenzierbare Funktion, die die Differentialgleichung erfüllt. Daraus folgt
wobei wir die Substitution angewendet haben. Für die zugehörigen Stammfunktionen (mit den unteren Integralgrenzen bzw. ) bedeutet dies , also ist .